2wbd
FRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE-1- PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH AN AMP SITE INHIBITORFRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE-1- PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH AN AMP SITE INHIBITOR
Structural highlights
DiseaseF16P1_HUMAN Defects in FBP1 are the cause of fructose-1,6-bisphosphatase deficiency (FBPD) [MIM:229700. FBPD is inherited as an autosomal recessive disorder mainly in the liver and causes life-threatening episodes of hypoglycemia and metabolic acidosis (lactacidemia) in newborn infants or young children.[1] [2] FunctionEvolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSulfonylureido thiazoles were identified from a HTS campaign and optimized through a combination of structure-activity studies, X-ray crystallography and molecular modeling to yield potent inhibitors of fructose-1,6-bisphosphatase. Compound 12 showed favorable ADME properties, for example, F=70%, and a robust 32% glucose reduction in the acute db/db mouse model for Type-2 diabetes. Sulfonylureido thiazoles as fructose-1,6-bisphosphatase inhibitors for the treatment of type-2 diabetes.,Kitas E, Mohr P, Kuhn B, Hebeisen P, Wessel HP, Haap W, Ruf A, Benz J, Joseph C, Huber W, Sanchez RA, Paehler A, Benardeau A, Gubler M, Schott B, Tozzo E Bioorg Med Chem Lett. 2010 Jan 15;20(2):594-9. Epub 2009 Nov 22. PMID:19969452[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|