E. coli P Pilus chaperone PapD in complex with a pilus biogenesis inhibitor, pilicide 2cE. coli P Pilus chaperone PapD in complex with a pilus biogenesis inhibitor, pilicide 2c

Structural highlights

2j7l is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PAPD_ECOLX Binds and caps interactive surfaces on pilus subunits to prevent them from participating in non-productive interactions. Facilitates the import of subunits into the periplasm. May facilitate subunit folding. Chaperone-subunit complexes are then targeted to the PapC outer membrane usher where the chaperone must uncap from the subunits.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A chemical synthesis platform with broad applications and flexibility was rationally designed to inhibit biogenesis of adhesive pili assembled by the chaperone-usher pathway in Gram-negative pathogens. The activity of a family of bicyclic 2-pyridones, termed pilicides, was evaluated in two different pilus biogenesis systems in uropathogenic Escherichia coli. Hemagglutination mediated by either type 1 or P pili, adherence to bladder cells, and biofilm formation mediated by type 1 pili were all reduced by approximately 90% in laboratory and clinical E. coli strains. The structure of the pilicide bound to the P pilus chaperone PapD revealed that the pilicide bound to the surface of the chaperone known to interact with the usher, the outer-membrane assembly platform where pili are assembled. Point mutations in the pilicide-binding site dramatically reduced pilus formation but did not block the ability of PapD to bind subunits and mediate their folding. Surface plasmon resonance experiments confirmed that the pilicide interfered with the binding of chaperone-subunit complexes to the usher. These pilicides thus target key virulence factors in pathogenic bacteria and represent a promising proof of concept for developing drugs that function by targeting virulence factors.

Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria.,Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, Pemberton N, Hedenstrom M, Larsson A, Seed P, Waksman G, Hultgren SJ, Almqvist F Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17897-902. Epub 2006 Nov 10. PMID:17098869[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, Pemberton N, Hedenstrom M, Larsson A, Seed P, Waksman G, Hultgren SJ, Almqvist F. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17897-902. Epub 2006 Nov 10. PMID:17098869

2j7l, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA