MMP-3/TIMP-1 COMPLEXMMP-3/TIMP-1 COMPLEX

Structural highlights

1uea is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MMP3_HUMAN Defects in MMP3 are the cause of susceptibility to coronary heart disease type 6 (CHDS6) [MIM:614466. A multifactorial disease characterized by an imbalance between myocardial functional requirements and the capacity of the coronary vessels to supply sufficient blood flow. Decreased capacity of the coronary vessels is often associated with thickening and loss of elasticity of the coronary arteries. Note=A polymorphism in the MMP3 promoter region is associated with the risk of coronary heart disease and myocardial infarction, due to lower MMP3 proteolytic activity and higher extracellular matrix deposition in atherosclerotic lesions.[1] [2]

Function

MMP3_HUMAN Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Matrix metalloproteinases (MMPs) are zinc endopeptidases that are required for the degradation of extracellular matrix components during normal embryo development, morphogenesis and tissue remodelling. Their proteolytic activities are precisely regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in diseases such as arthritis, atherosclerosis, tumour growth and metastasis. Here we report the crystal structure of an MMP-TIMP complex formed between the catalytic domain of human stromelysin-1 (MMP-3) and human TIMP-1. TIMP-1, a 184-residue protein, has the shape of an elongated, contiguous wedge. With its long edge, consisting of five different chain regions, it occupies the entire length of the active-site cleft of MMP-3. The central disulphide-linked segments Cys 1-Thr 2-Cys 3-Val 4 and Ser 68-Val 69 bind to either side of the catalytic zinc. Cys 1 bidentally coordinates this zinc, and the Thr-2 side chain extends into the large specificity pocket of MMP-3. This unusual architecture of the interface between MMP-3 and TIMP-1 suggests new possibilities for designing TIMP variants and synthetic MMP inhibitors with potential therapeutic applications.

Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1.,Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W Nature. 1997 Sep 4;389(6646):77-81. PMID:9288970[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem. 1996 May 31;271(22):13055-60. PMID:8662692
  2. Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med. 2002 Dec 12;347(24):1916-23. PMID:12477941 doi:10.1056/NEJMoa021445
  3. Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997 Sep 4;389(6646):77-81. PMID:9288970 doi:10.1038/37995

1uea, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA