1lfh
MOLECULAR REPLACEMENT SOLUTION OF THE STRUCTURE OF APOLACTOFERRIN, A PROTEIN DISPLAYING LARGE-SCALE CONFORMATIONAL CHANGEMOLECULAR REPLACEMENT SOLUTION OF THE STRUCTURE OF APOLACTOFERRIN, A PROTEIN DISPLAYING LARGE-SCALE CONFORMATIONAL CHANGE
Structural highlights
FunctionTRFL_HUMAN Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate.[1] [2] Lactotransferrin has antimicrobial activity which depends on the extracellular cation concentration.[3] [4] Lactoferroxins A, B and C have opioid antagonist activity. Lactoferroxin A shows preference for mu-receptors, while lactoferroxin B and C have somewhat higher degrees of preference for kappa-receptors than for mu-receptors.[5] [6] The lactotransferrin transferrin-like domain 1 functions as a serine protease of the peptidase S60 family that cuts arginine rich regions. This function contributes to the antimicrobial activity.[7] [8] Isoform DeltaLf: transcription factor with antiproliferative properties and inducing cell cycle arrest. Binds to DeltaLf response element found in the SKP1, BAX, DCPS, and SELH promoters.[9] [10] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of an orthorhombic form of human apolactoferrin (ApoLf) has been determined from 2.8 A diffractometer data by molecular replacement methods. A variety of search models derived from the diferric lactoferrin structure (Fe2Lf) were used to obtain a consistent solution to the rotation function. An R-factor search gave the correct translational solution and the model was refined by rigid-body least-squares refinement (program CORELS). Only three of the four domains were located correctly by this procedure, however; the fourth was finally placed correctly by rotating it manually onto three strands of electron density which were recognized as part of its central beta-sheet. The final model, refined by restrained least-squares methods to an R factor of 0.214 for data in the resolution range 10.0 to 2.8 A, shows a large domain movement in the N-terminal half of the molecule (a 54 degree rotation of domain N2) and smaller domain movements elsewhere, when compared with Fe2Lf. A feature of the crystal structure is that although the ApoLf and Fe2Lf unit cells appear very similar, their crystal packing and molecular structures are quite different. Molecular replacement solution of the structure of apolactoferrin, a protein displaying large-scale conformational change.,Norris GE, Anderson BF, Baker EN Acta Crystallogr B. 1991 Dec 1;47 ( Pt 6):998-1004. PMID:1772635[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|