CRYSTAL STRUCTURE OF REDUCED THIOREDOXIN REDUCTASE FROM ESCHERICHIA COLI.CRYSTAL STRUCTURE OF REDUCED THIOREDOXIN REDUCTASE FROM ESCHERICHIA COLI.

Structural highlights

1cl0 is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TRXB_ECOLI

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Catalysis by thioredoxin reductase (TrxR) from Escherichia coli requires alternation between two domain arrangements. One of these conformations has been observed by X-ray crystallography (Waksman G, Krishna TSR, Williams CH Jr, Kuriyan J, 1994, J Mol Biol 236:800-816). This form of TrxR, denoted FO, permits the reaction of enzyme-bound reduced FAD with a redox-active disulfide on TrxR. As part of an investigation of conformational changes and intermediates in catalysis by TrxR, an X-ray structure of the FO form of TrxR with both the FAD and active site disulfide reduced has been determined. Reduction after crystallization resulted in significant local conformation changes. The isoalloxazine ring of the FAD cofactor, which is essentially planar in the oxidized enzyme, assumes a 34 degree "butterfly" bend about the N(5)-N(10) axis in reduced TrxR. Theoretical calculations reported by others predict ring bending of 15-28 degrees for reduced isoalloxazines protonated at N(1). The large bending in reduced TrxR is attributed in part to steric interactions between the isoalloxazine ring and the sulfur of Cys138, formed by reduction of the active site disulfide, and is accompanied by changes in the positions and interactions of several of the ribityl side-chain atoms of FAD. The bending angle in reduced TrxR is larger than that for any flavoprotein in the Protein Data Bank. Distributions of bending angles in published oxidized and reduced flavoenzyme structures are different from those found in studies of free flavins, indicating that the protein environment has a significant effect on bending.

Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor.,Lennon BW, Williams CH Jr, Ludwig ML Protein Sci. 1999 Nov;8(11):2366-79. PMID:10595539[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lennon BW, Williams CH Jr, Ludwig ML. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Protein Sci. 1999 Nov;8(11):2366-79. PMID:10595539

1cl0, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA