1b7a
STRUCTURE OF THE PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN FROM BOVINE BRAINSTRUCTURE OF THE PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN FROM BOVINE BRAIN
Structural highlights
FunctionPEBP1_BOVIN Binds ATP, opioids and phosphatidylethanolamine. Has lower affinity for phosphatidylinositol and phosphatidylcholine. Serine protease inhibitor which inhibits thrombin, neuropsin and chymotrypsin but not trypsin, tissue type plasminogen activator and elastase (By similarity). Inhibits the kinase activity of RAF1 by inhibiting its activation and by dissociating the RAF1/MEK complex and acting as a competitive inhibitor of MEK phosphorylation (By similarity). HCNP may be involved in the function of the presynaptic cholinergic neurons of the central nervous system. HCNP increases the production of choline acetyltransferase but not acetylcholinesterase. Seems to be mediated by a specific receptor (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Phosphatidylethanolamine-binding protein (PEBP) is a basic protein found in numerous tissues from a wide range of species. The screening of gene and protein data banks defines a family of PEBP-related proteins that are present in a variety of organisms, including Drosophila and inferior eukaryotes. PEBP binds to phosphatidylethanolamine and nucleotides in vitro, but its biological function in vivo is not yet known. The expression of PEBP and related proteins seems to be correlated with development and cell morphogenesis, however. To obtain new insights into the PEBP family and its potential functions, we initiated a crystallographic study of bovine brain PEPB. RESULTS: The X-ray crystal structure of bovine brain PEBP has been solved using multiple isomorphous replacement methods, and refined to 1.84 A resolution. The structure displays a beta fold and exhibits one nonprolyl cis peptide bond. Analysis of cavities within the structure and sequence alignments were used to identify a putative ligand-binding site. This binding site is defined by residues of the C-terminal helix and the residues His85, Asp69, Gly109 and Tyr119. This site also corresponds to the binding site of phosphorylethanolamine, the polar head group of phosphatidylethanolamine. CONCLUSIONS: This study shows that PEBP is not related to the G-protein family nor to known lipid-binding proteins, and therefore defines a novel structural family of phospholipid-binding proteins. The PEBP structure contains no internal hydrophobic pocket, as described for lipocalins or small phospholipid-transfer proteins. Nevertheless, in PEBP, a small cavity close to the protein surface has a high affinity for anions, such as phosphate and acetate, and also phosphorylethanolamine. We suggest that this cavity corresponds to the binding site of the polar head group of phosphatidylethanolamine. Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: a novel structural class of phospholipid-binding proteins.,Serre L, Vallee B, Bureaud N, Schoentgen F, Zelwer C Structure. 1998 Oct 15;6(10):1255-65. PMID:9782057[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|