5o7e
Crystal structure of the peptidase domain of collagenase H from Clostridium histolyticum in complex with N-aryl mercaptoacetamide-based inhibitorCrystal structure of the peptidase domain of collagenase H from Clostridium histolyticum in complex with N-aryl mercaptoacetamide-based inhibitor
Structural highlights
FunctionCOLH_HATHI Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). The full-length protein has collagenase activity, while both the 116 kDa and 98 kDa forms act on gelatin (PubMed:7961400). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain is also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). Digestion of collagen requires Ca(2+) and is inhibited by EDTA (PubMed:9452493). The activator domain (residues 119-388) and catalytic subdomain (330-601) open and close around substrate allowing digestion when the protein is closed (PubMed:23703618).[1] [2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedSecreted virulence factors like bacterial collagenases are conceptually attractive targets for fighting microbial infections. However, previous attempts to develop potent compounds against these metalloproteases failed to achieve selectivity against human matrix metalloproteinases (MMPs). Using a surface plasmon resonance-based screening complemented with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed sub-micromolar affinities toward collagenase H (ColH) from the human pathogen Clostridium histolyticum. Moreover, these inhibitors also efficiently blocked the homologous bacterial collagenases, ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1, while showing negligible activity toward human MMPs-1, -2, -3, -7, -8, and -14. The most active compound displayed a more than 1000-fold selectivity over human MMPs. This selectivity can be rationalized by the crystal structure of ColH with this compound, revealing a distinct non-primed binding mode to the active site. The non-primed binding mode presented here paves the way for the development of selective broad-spectrum bacterial collagenase inhibitors with potential therapeutic application in humans. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases.,Schonauer E, Kany AM, Haupenthal J, Husecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsasser B, Ducho C, Brandstetter H, Hartmann RW J Am Chem Soc. 2017 Sep 13;139(36):12696-12703. doi: 10.1021/jacs.7b06935. Epub, 2017 Aug 31. PMID:28820255[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|