5ukm

Revision as of 16:29, 4 October 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

bovine GRK2 in complex with human Gbetagamma subunits and CCG258208 (14as)bovine GRK2 in complex with human Gbetagamma subunits and CCG258208 (14as)

Structural highlights

5ukm is a 3 chain structure with sequence from Bos taurus and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.03Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ARBK1_BOVIN Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them. Key regulator of LPAR1 signaling. Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor. Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner (By similarity).

Publication Abstract from PubMed

In heart failure, the beta-adrenergic receptors (betaARs) become desensitized and uncoupled from heterotrimeric G proteins. This process is initiated by G protein-coupled receptor kinases (GRKs), some of which are upregulated in the failing heart, making them desirable therapeutic targets. The selective serotonin reuptake inhibitor, paroxetine, was previously identified as a GRK2 inhibitor. Utilizing a structure-based drug design approach, we modified paroxetine to generate a small compound library. Included in this series is a highly potent and selective GRK2 inhibitor, 14as, with an IC50 of 30 nM against GRK2 and greater than 230-fold selectivity over other GRKs and kinases. Furthermore, 14as showed a 100-fold improvement in cardiomyocyte contractility assays over paroxetine and a plasma concentration higher than its IC50 for over 7 h. Three of these inhibitors, including 14as, were additionally crystallized in complex with GRK2 to give insights into the structural determinants of potency and selectivity of these inhibitors.

Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine.,Waldschmidt HV, Homan KT, Cato MC, Cruz-Rodriguez O, Cannavo A, Wilson MW, Song J, Cheung JY, Koch WJ, Tesmer JJ, Larsen SD J Med Chem. 2017 Mar 29. doi: 10.1021/acs.jmedchem.7b00112. PMID:28323425[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Waldschmidt HV, Homan KT, Cato MC, Cruz-Rodriguez O, Cannavo A, Wilson MW, Song J, Cheung JY, Koch WJ, Tesmer JJ, Larsen SD. Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. J Med Chem. 2017 Mar 29. doi: 10.1021/acs.jmedchem.7b00112. PMID:28323425 doi:http://dx.doi.org/10.1021/acs.jmedchem.7b00112

5ukm, resolution 3.03Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA