1jdh
CRYSTAL STRUCTURE OF BETA-CATENIN AND HTCF-4CRYSTAL STRUCTURE OF BETA-CATENIN AND HTCF-4
Structural highlights
Disease[CTNB1_HUMAN] Defects in CTNNB1 are associated with colorectal cancer (CRC) [MIM:114500]. Note=Activating mutations in CTNNB1 have oncogenic activity resulting in tumor development. Somatic mutations are found in various tumor types, including colon cancers, ovarian and prostate carcinomas, hepatoblastoma (HB), hepatocellular carcinoma (HCC). HBs are malignant embryonal tumors mainly affecting young children in the first three years of life. Defects in CTNNB1 are a cause of pilomatrixoma (PTR) [MIM:132600]; a common benign skin tumor.[1] [2] [3] Defects in CTNNB1 are a cause of medulloblastoma (MDB) [MIM:155255]. MDB is a malignant, invasive embryonal tumor of the cerebellum with a preferential manifestation in children.[4] [5] Defects in CTNNB1 are a cause of susceptibility to ovarian cancer (OC) [MIM:167000]. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Note=A chromosomal aberration involving CTNNB1 is found in salivary gland pleiomorphic adenomas, the most common benign epithelial tumors of the salivary gland. Translocation t(3;8)(p21;q12) with PLAG1. Defects in CTNNB1 may be a cause of mesothelioma malignant (MESOM) [MIM:156240]. An aggressive neoplasm of the serosal lining of the chest. It appears as broad sheets of cells, with some regions containing spindle-shaped, sarcoma-like cells and other regions showing adenomatous patterns. Pleural mesotheliomas have been linked to exposure to asbestos.[6] [TF7L2_HUMAN] Note=Constitutive activation and subsequent transactivation of target genes may lead to the maintenance of stem-cell characteristics (cycling and longevity) in cells that should normally undergo terminal differentiation and constitute the primary transforming event in colorectal cancer (CRC). Genetic variations in TCF7L2 are associated with susceptibility to non-insulin-dependent diabetes mellitus (NIDDM) [MIM:125853]. NIDDM is characterized by an autosomal dominant mode of inheritance, onset during adulthood and insulin resistance.[7] Function[CTNB1_HUMAN] Key downstream component of the canonical Wnt signaling pathway. In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome. In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes. Involved in the regulation of cell adhesion. Acts as a negative regulator of centrosome cohesion. Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization. Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2.[8] [9] [10] [11] [TF7L2_HUMAN] Participates in the Wnt signaling pathway and modulates MYC expression by binding to its promoter in a sequence-specific manner. Acts as repressor in the absence of CTNNB1, and as activator in its presence. Activates transcription from promoters with several copies of the Tcf motif 5'-CCTTTGATC-3' in the presence of CTNNB1. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7L2/TCF4 and CTNNB1. Expression of dominant-negative mutants results in cell-cycle arrest in G1. Necessary for the maintenance of the epithelial stem-cell compartment of the small intestine.[12] [13] [14] [15] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAccumulation of the Wnt pathway effector beta-catenin is a hallmark of a number of cancers, including colon cancer. As beta-catenin accumulates in the cell, it forms a complex with Tcf family transcription factors and activates the transcription of several critical genes involved in cell proliferation. Because Tcf4 is the predominant Tcf factor present in colon cancer cells, drugs that specifically disrupt the beta-catenin-Tcf4 complex could be useful in treating colon cancers. Earlier structural and biochemical studies demonstrated that the central region of the beta-catenin binding domain of Tcf is essential for anchoring Tcf to beta-catenin via two conserved lysines in beta-catenin (called the charged 'buttons'). Here we report the crystal structure of a beta-catenin-Tcf4 complex at 2.0 A resolution. Our structural and mutagenesis studies show that Tcf4 docks specifically to beta-catenin using several distinct conformations in its essential central region. These conformations allow different glutamate residues in the central region of Tcf4 to form a salt bridge with the same critical charged button, Lys 312 of beta-catenin. We propose that this interaction may be the first event in beta-catenin-Tcf4 recognition. Tcf4 can specifically recognize beta-catenin using alternative conformations.,Graham TA, Ferkey DM, Mao F, Kimelman D, Xu W Nat Struct Biol. 2001 Dec;8(12):1048-52. PMID:11713475[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|