Crystal Structure of Rhodobacter Sphaeroides LOV proteinCrystal Structure of Rhodobacter Sphaeroides LOV protein

Structural highlights

4hj4 is a 2 chain structure with sequence from Rhos5. The March 2015 RCSB PDB Molecule of the Month feature on Phototropin by David Goodsell is 10.2210/rcsb_pdb/mom_2015_3. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Light-oxygen-voltage (LOV) domains bind a flavin chromophore to serve as blue light sensors in a wide range of eukaryotic and prokaryotic proteins. LOV domains are associated with a variable effector domain or a separate protein signaling partner to execute a wide variety of functions that include regulation of kinases, generation of anti-sigma factor antagonists, and regulation of circadian clocks. Here we present the crystal structure, photocycle kinetics, association properties, and spectroscopic features of a full-length LOV domain protein from Rhodobacter sphaeroides (RsLOV). RsLOV exhibits N- and C-terminal helical extensions that form an unusual helical bundle at its dimer interface with some resemblance to the helical transducer of sensory rhodopsin II. The blue light-induced conformational changes of RsLOV revealed from a comparison of light- and dark-state crystal structures support a shared signaling mechanism of LOV domain proteins that originates with the light-induced formation of a flavin-cysteinyl photoadduct. Adduct formation disrupts hydrogen bonding in the active site and propagates structural changes through the LOV domain core to the N- and C-terminal extensions. Single-residue variants in the active site and dimer interface of RsLOV alter photoadduct lifetimes and induce structural changes that perturb the oligomeric state. Size exclusion chromatography, multiangle light scattering, small-angle X-ray scattering, and cross-linking studies indicate that RsLOV dimerizes in the dark but, upon light excitation, dissociates into monomers. This light-induced switch in oligomeric state may prove to be useful for engineering molecular associations in controlled cellular settings.

Light-Induced Subunit Dissociation by a Light-Oxygen-Voltage Domain Photoreceptor from Rhodobacter sphaeroides.,Conrad KS, Bilwes AM, Crane BR Biochemistry. 2013 Jan 15;52(2):378-91. doi: 10.1021/bi3015373. Epub 2013 Jan 3. PMID:23252338[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Conrad KS, Bilwes AM, Crane BR. Light-Induced Subunit Dissociation by a Light-Oxygen-Voltage Domain Photoreceptor from Rhodobacter sphaeroides. Biochemistry. 2013 Jan 15;52(2):378-91. doi: 10.1021/bi3015373. Epub 2013 Jan 3. PMID:23252338 doi:10.1021/bi3015373

4hj4, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA