1dar
ELONGATION FACTOR G IN COMPLEX WITH GDPELONGATION FACTOR G IN COMPLEX WITH GDP
Structural highlights
Function[EFG_THET8] Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Elongation factor G (EF-G) catalyzes the translocation step of translation. During translocation EF-G passes through four main conformational states: the GDP complex, the nucleotide-free state, the GTP complex, and the GTPase conformation. The first two of these conformations have been previously investigated by crystallographic methods. RESULTS: The structure of EF-G-GDP has been refined at 2.4 A resolution. Comparison with the nucleotide-free structure reveals that, upon GDP release, the phosphate-binding loop (P-loop) adopts a closed conformation. This affects the position of helix CG, the switch II loop and domains II, IV and V. Asp83 has a conformation similar to the conformation of the corresponding residue in the EF-Tu/EF-Ts complex. The magnesium ion is absent in EF-G-GDP. CONCLUSIONS: The results illustrate that conformational changes in the P-loop can be transmitted to other parts of the structure. A comparison of the structures of EF-G and EF-Tu suggests that EF-G, like EF-Tu, undergoes a transition with domain rearrangements. The conformation of EF-G-GDP around the nucleotide-binding site may be related to the mechanism of nucleotide exchange. The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange.,al-Karadaghi S, Aevarsson A, Garber M, Zheltonosova J, Liljas A Structure. 1996 May 15;4(5):555-65. PMID:8736554[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|