8v9g

From Proteopedia
Jump to navigation Jump to search

GES-5-meropenem complexGES-5-meropenem complex

Structural highlights

8v9g is a 2 chain structure with sequence from Klebsiella pneumoniae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.62Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BLAG5_KLEPN Confers resistance to penicillins, cephalosporins and carbapenems (PubMed:20696873, PubMed:27590339). Has carbapenem-hydrolyzing activity (PubMed:27590339).[1] [2]

Publication Abstract from PubMed

Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5alpha-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 +/- 0.9) x 10(5) M(-1) s(-1). Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k(3) = (2.4 +/- 0.3) x 10(-7) s(-1)), resulting in a residence time of 48 +/- 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5alpha-methyl group in NA-1-157 sterically restricts rotation of the 6alpha-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.

Restricted Rotational Flexibility of the C5alpha-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the GES-5 Carbapenemase.,Stewart NK, Toth M, Quan P, Beer M, Buynak JD, Smith CA, Vakulenko SB ACS Infect Dis. 2024 Apr 12;10(4):1232-1249. doi: 10.1021/acsinfecdis.3c00683. , Epub 2024 Mar 21. PMID:38511828[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother. 2010 Nov;54(11):4864-71. PMID:20696873 doi:10.1128/AAC.00771-10
  2. Smith CA, Nossoni Z, Toth M, Stewart NK, Frase H, Vakulenko SB. Role of the conserved disulfide bridge in class A carbapenemases. J Biol Chem. 2016 Sep 2. pii: jbc.M116.749648. PMID:27590339 doi:http://dx.doi.org/10.1074/jbc.M116.749648
  3. Stewart NK, Toth M, Quan P, Beer M, Buynak JD, Smith CA, Vakulenko SB. Restricted Rotational Flexibility of the C5α-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the GES-5 Carbapenemase. ACS Infect Dis. 2024 Apr 12;10(4):1232-1249. PMID:38511828 doi:10.1021/acsinfecdis.3c00683

8v9g, resolution 1.62Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA