5t6f
1.90 A resolution structure of Norovirus 3CL protease in complex with the dipeptidyl inhibitor 7l (orthorhombic P form)1.90 A resolution structure of Norovirus 3CL protease in complex with the dipeptidyl inhibitor 7l (orthorhombic P form)
Structural highlights
FunctionPOLG_NVN68 Protein p48 may play a role in viral replication by interacting with host VAPA, a vesicle-associated membrane protein that plays a role in SNARE-mediated vesicle fusion. This interaction may target replication complex to intracellular membranes.[1] [2] NTPase presumably plays a role in replication. Despite having similarities with helicases, does not seem to display any helicase activity.[3] [4] Protein P22 may play a role in targeting replication complex to intracellular membranes.[5] [6] Viral genome-linked protein is covalently linked to the 5'-end of the positive-strand, negative-strand genomic RNAs and subgenomic RNA. Acts as a genome-linked replication primer. May recruit ribosome to viral RNA thereby promoting viral proteins translation.[7] [8] 3C-like protease processes the polyprotein: 3CLpro-RdRp is first released by autocleavage, then all other proteins are cleaved. May cleave host polyadenylate-binding protein thereby inhibiting cellular translation (By similarity).[9] [10] RNA-directed RNA polymerase replicates genomic and antigenomic RNA by recognizing replications specific signals. Transcribes also a subgenomic mRNA by initiating RNA synthesis internally on antigenomic RNA. This sgRNA encodes for structural proteins. Catalyzes the covalent attachment VPg with viral RNAs (By similarity).[11] [12] Publication Abstract from PubMedHuman noroviruses are the primary cause of epidemic and sporadic acute gastroenteritis. The worldwide high morbidity and mortality associated with norovirus infections, particularly among the elderly, immunocompromised patients and children, constitute a serious public health concern. There are currently no approved human vaccines or norovirus-specific small-molecule therapeutics or prophylactics. Norovirus 3CL protease has recently emerged as a potential therapeutic target for the development of anti-norovirus agents. We hypothesized that the S4 subsite of the enzyme may provide an effective means of designing potent and cell permeable inhibitors of the enzyme. We report herein the structure-guided exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design and synthesis of effective inhibitors of the protease. Structure-based exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design of potent and permeable inhibitors.,Galasiti Kankanamalage AC, Kim Y, Rathnayake AD, Damalanka VC, Weerawarna PM, Doyle ST, Alsoudi AF, Dissanayake DM, Lushington GH, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC Eur J Med Chem. 2016 Nov 14;126:502-516. doi: 10.1016/j.ejmech.2016.11.027. PMID:27914364[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|