1ncf

From Proteopedia
Jump to navigation Jump to search

A NEW PARADIGM FOR TUMOR NECROSIS FACTOR SIGNALLINGA NEW PARADIGM FOR TUMOR NECROSIS FACTOR SIGNALLING

Structural highlights

1ncf is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.25Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TNR1A_HUMAN Defects in TNFRSF1A are the cause of familial hibernian fever (FHF) [MIM:142680; also known as tumor necrosis factor receptor-associated periodic syndrome (TRAPS). FHF is a hereditary periodic fever syndrome characterized by recurrent fever, abdominal pain, localized tender skin lesions and myalgia. Reactive amyloidosis is the main complication and occurs in 25% of cases.[1] [2] [3] [4] [5] Genetic variation in TNFRSF1A is associated with susceptibility to multiple sclerosis 5 (MS5) [MIM:614810. A multifactorial, inflammatory, demyelinating disease of the central nervous system. Sclerotic lesions are characterized by perivascular infiltration of monocytes and lymphocytes and appear as indurated areas in pathologic specimens (sclerosis in plaques). The pathological mechanism is regarded as an autoimmune attack of the myelin sheat, mediated by both cellular and humoral immunity. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia and bladder dysfunction. Genetic and environmental factors influence susceptibility to the disease. Note=An intronic mutation affecting alternative splicing and skipping of exon 6 directs increased expression of isoform 4 a transcript encoding a C-terminally truncated protein which is secreted and may function as a TNF antagonist.[6]

Function

TNR1A_HUMAN Receptor for TNFSF2/TNF-alpha and homotrimeric TNFSF1/lymphotoxin-alpha. The adapter molecule FADD recruits caspase-8 to the activated receptor. The resulting death-inducing signaling complex (DISC) performs caspase-8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis. Contributes to the induction of non-cytocidal TNF effects including anti-viral state and activation of the acid sphingomyelinase.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Activation of the cell surface receptors for tumor necrosis factor (TNF) is effected by the aggregation of cytoplasmic domains that occurs when the extracellular domains of two or three receptors bind to trimeric TNF alpha or TNF beta. The structure of the type I TNF receptor extracellular domain (sTNF-R1), crystallized in the absence of TNF, has now been determined at 2.25-A resolution. The receptor itself is an elongated molecule comprising four disulfide-rich domains in a nearly linear array. Contrary to expectations, the unliganded domains are found to associate into dimers of two distinct types, in which monomers are related by local two-fold axes of symmetry. In one case, the receptors are antiparallel to each other and associate through an interface that overlaps the TNF binding site. If intact receptors were capable of such an association, their cytoplasmic domains would be separated by over 100 A. This interaction could inhibit signaling in the absence of TNF. Parallel dimers are also observed in which the dimer interface is well separated from the TNF binding site. Associations among TNF-bound parallel dimers could cause receptor clustering. Both dimers bury substantial areas of protein surface and are formed by polar and non-polar interactions.

Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor.,Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR J Biol Chem. 1995 Jun 2;270(22):13303-7. PMID:7768931[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T, McCarthy J, Frucht DM, Aringer M, Torosyan Y, Teppo AM, Wilson M, Karaarslan HM, Wan Y, Todd I, Wood G, Schlimgen R, Kumarajeewa TR, Cooper SM, Vella JP, Amos CI, Mulley J, Quane KA, Molloy MG, Ranki A, Powell RJ, Hitman GA, O'Shea JJ, Kastner DL. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999 Apr 2;97(1):133-44. PMID:10199409
  2. Dode C, Papo T, Fieschi C, Pecheux C, Dion E, Picard F, Godeau P, Bienvenu J, Piette JC, Delpech M, Grateau G. A novel missense mutation (C30S) in the gene encoding tumor necrosis factor receptor 1 linked to autosomal-dominant recurrent fever with localized myositis in a French family. Arthritis Rheum. 2000 Jul;43(7):1535-42. PMID:10902757 doi:<1535::AID-ANR18>3.0.CO;2-C 10.1002/1529-0131(200007)43:7<1535::AID-ANR18>3.0.CO;2-C
  3. Aksentijevich I, Galon J, Soares M, Mansfield E, Hull K, Oh HH, Goldbach-Mansky R, Dean J, Athreya B, Reginato AJ, Henrickson M, Pons-Estel B, O'Shea JJ, Kastner DL. The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet. 2001 Aug;69(2):301-14. Epub 2001 Jul 6. PMID:11443543 doi:S0002-9297(07)61077-5
  4. Aganna E, Hammond L, Hawkins PN, Aldea A, McKee SA, van Amstel HK, Mischung C, Kusuhara K, Saulsbury FT, Lachmann HJ, Bybee A, McDermott EM, La Regina M, Arostegui JI, Campistol JM, Worthington S, High KP, Molloy MG, Baker N, Bidwell JL, Castaner JL, Whiteford ML, Janssens-Korpola PL, Manna R, Powell RJ, Woo P, Solis P, Minden K, Frenkel J, Yague J, Mirakian RM, Hitman GA, McDermott MF. Heterogeneity among patients with tumor necrosis factor receptor-associated periodic syndrome phenotypes. Arthritis Rheum. 2003 Sep;48(9):2632-44. PMID:13130484 doi:10.1002/art.11215
  5. Kusuhara K, Nomura A, Nakao F, Hara T. Tumour necrosis factor receptor-associated periodic syndrome with a novel mutation in the TNFRSF1A gene in a Japanese family. Eur J Pediatr. 2004 Jan;163(1):30-2. Epub 2003 Nov 11. PMID:14610673 doi:10.1007/s00431-003-1338-0
  6. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, Poschmann G, Kaur G, Lambert L, Leach OA, Promel S, Punwani D, Felce JH, Davis SJ, Gold R, Nielsen FC, Siegel RM, Mann M, Bell JI, McVean G, Fugger L. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012 Aug 23;488(7412):508-11. doi: 10.1038/nature11307. PMID:22801493 doi:10.1038/nature11307
  7. Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem. 1995 Jun 2;270(22):13303-7. PMID:7768931

1ncf, resolution 2.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA