CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR208815CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR208815
Structural highlights
1f0r is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
FA10_HUMAN Defects in F10 are the cause of factor X deficiency (FA10D) [MIM:227600. A hemorrhagic disease with variable presentation. Affected individuals can manifest prolonged nasal and mucosal hemorrhage, menorrhagia, hematuria, and occasionally hemarthrosis. Some patients do not have clinical bleeding diathesis.[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17]
Function
FA10_HUMAN Factor Xa is a vitamin K-dependent glycoprotein that converts prothrombin to thrombin in the presence of factor Va, calcium and phospholipid during blood clotting.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Involved in the coagulation cascade, factor Xa (FXa) is a serine protease which has received great interest as a potential target for the development of new antithrombotics. Although there is a great wealth of structural data on thrombin complexes, few structures of ligand/FXa complexes have been reported, presumably because of the difficulty in growing crystals. Reproducible crystallization conditions for human des-Gla1-45 coagulation FXa have been found. This has led to an improvement in the diffraction quality of the crystals (about 2.1 A) when compared to the previously reported forms (2.3-2.8 A) thus providing a suitable platform for a structure-based drug design approach. A series of crystal structures of noncovalent inhibitors complexed with FXa have been determined, three of which are presented herein. These include compounds containing the benzamidine moiety and surrogates of the basic group. The benzamidine-containing compound binds in a canonical fashion typical of synthetic serine protease inhibitors. On the contrary, molecules that contain surrogates of the benzamidine group do not make direct hydrogen-bonding interactions with the carboxylate of Asp189 at the bottom of the S1 pocket. The structural data provide a likely explanation for the specificity of these inhibitors and a great aid in the design of bioavailable potent FXa inhibitors.
Crystal structures of human factor Xa complexed with potent inhibitors.,Maignan S, Guilloteau JP, Pouzieux S, Choi-Sledeski YM, Becker MR, Klein SI, Ewing WR, Pauls HW, Spada AP, Mikol V J Med Chem. 2000 Aug 24;43(17):3226-32. PMID:10966741[18]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑Reddy SV, Zhou ZQ, Rao KJ, Scott JP, Watzke H, High KA, Jagadeeswaran P. Molecular characterization of human factor XSan Antonio. Blood. 1989 Oct;74(5):1486-90. PMID:2790181
↑Watzke HH, Lechner K, Roberts HR, Reddy SV, Welsch DJ, Friedman P, Mahr G, Jagadeeswaran P, Monroe DM, High KA. Molecular defect (Gla+14----Lys) and its functional consequences in a hereditary factor X deficiency (factor X "Vorarlberg"). J Biol Chem. 1990 Jul 15;265(20):11982-9. PMID:1973167
↑James HL, Girolami A, Fair DS. Molecular defect in coagulation factor XFriuli results from a substitution of serine for proline at position 343. Blood. 1991 Jan 15;77(2):317-23. PMID:1985698
↑Marchetti G, Castaman G, Pinotti M, Lunghi B, Di Iasio MG, Ruggieri M, Rodeghiero F, Bernardi F. Molecular bases of CRM+ factor X deficiency: a frequent mutation (Ser334Pro) in the catalytic domain and a substitution (Glu102Lys) in the second EGF-like domain. Br J Haematol. 1995 Aug;90(4):910-5. PMID:7669671
↑Bezeaud A, Miyata T, Helley D, Zeng YZ, Kato H, Aillaud MF, Juhan-Vague I, Guillin MC. Functional consequences of the Ser334-->Pro mutation in a human factor X variant (factor XMarseille). Eur J Biochem. 1995 Nov 15;234(1):140-7. PMID:8529633
↑Kim DJ, Thompson AR, James HL. Factor XKetchikan: a variant molecule in which Gly replaces a Gla residue at position 14 in the light chain. Hum Genet. 1995 Feb;95(2):212-4. PMID:7860069
↑Messier TL, Wong CY, Bovill EG, Long GL, Church WR. Factor X Stockton: a mild bleeding diathesis associated with an active site mutation in factor X. Blood Coagul Fibrinolysis. 1996 Jan;7(1):5-14. PMID:8845463
↑Rudolph AE, Mullane MP, Porche-Sorbet R, Tsuda S, Miletich JP. Factor XSt. Louis II. Identification of a glycine substitution at residue 7 and characterization of the recombinant protein. J Biol Chem. 1996 Nov 8;271(45):28601-6. PMID:8910490
↑Zama T, Murata M, Watanabe R, Yokoyama K, Moriki T, Ambo H, Murakami H, Kikuchi M, Ikeda Y. A family with hereditary factor X deficiency with a point mutation Gla32 to Gln in the Gla domain (factor X Tokyo). Br J Haematol. 1999 Sep;106(3):809-11. PMID:10468877
↑Millar DS, Elliston L, Deex P, Krawczak M, Wacey AI, Reynaud J, Nieuwenhuis HK, Bolton-Maggs P, Mannucci PM, Reverter JC, Cachia P, Pasi KJ, Layton DM, Cooper DN. Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Hum Genet. 2000 Feb;106(2):249-57. PMID:10746568
↑Forberg E, Huhmann I, Jimenez-Boj E, Watzke HH. The impact of Glu102Lys on the factor X function in a patient with a doubly homozygous factor X deficiency (Gla14Lys and Glu102Lys). Thromb Haemost. 2000 Feb;83(2):234-8. PMID:10739379
↑Simioni P, Vianello F, Kalafatis M, Barzon L, Ladogana S, Paolucci P, Carotenuto M, Dal Bello F, Palu G, Girolami A. A dysfunctional factor X (factor X San Giovanni Rotondo) present at homozygous and double heterozygous level: identification of a novel microdeletion (delC556) and missense mutation (Lys(408)-->Asn) in the factor X gene. A study of an Italian family. Thromb Res. 2001 Feb 15;101(4):219-30. PMID:11248282
↑Vianello F, Lombardi AM, Boldrin C, Luni S, Girolami A. A new factor X defect (factor X Padua 3): a compound heterozygous between true deficiency (Gly(380)-->Arg) and an abnormality (Ser(334)-->Pro). Thromb Res. 2001 Nov 15;104(4):257-64. PMID:11728527
↑Vianello F, Lombardi AM, Bello FD, Palu G, Zanon E, Girolami A. A novel type I factor X variant (factor X Cys350Phe) due to loss of a disulfide bond in the catalytic domain. Blood Coagul Fibrinolysis. 2003 Jun;14(4):401-5. PMID:12945883
↑Isshiki I, Favier R, Moriki T, Uchida T, Ishihara H, Van Dreden P, Murata M, Ikeda Y. Genetic analysis of hereditary factor X deficiency in a French patient of Sri Lankan ancestry: in vitro expression study identified Gly366Ser substitution as the molecular basis of the dysfunctional factor X. Blood Coagul Fibrinolysis. 2005 Jan;16(1):9-16. PMID:15650540
↑Al-Hilali A, Wulff K, Abdel-Razeq H, Saud KA, Al-Gaili F, Herrmann FH. Analysis of the novel factor X gene mutation Glu51Lys in two families with factor X-Riyadh anomaly. Thromb Haemost. 2007 Apr;97(4):542-5. PMID:17393015
↑Chafa O, Tagzirt M, Tapon-Bretaudiere J, Reghis A, Fischer AM, LeBonniec BF. Characterization of a homozygous Gly11Val mutation in the Gla domain of coagulation factor X. Thromb Res. 2009 May;124(1):144-8. doi: 10.1016/j.thromres.2008.11.018. Epub 2009, Jan 10. PMID:19135706 doi:10.1016/j.thromres.2008.11.018
↑Maignan S, Guilloteau JP, Pouzieux S, Choi-Sledeski YM, Becker MR, Klein SI, Ewing WR, Pauls HW, Spada AP, Mikol V. Crystal structures of human factor Xa complexed with potent inhibitors. J Med Chem. 2000 Aug 24;43(17):3226-32. PMID:10966741