1c1f

From Proteopedia
Jump to navigation Jump to search

LIGAND-FREE CONGERIN ILIGAND-FREE CONGERIN I

Structural highlights

1c1f is a 1 chain structure with sequence from Conger myriaster. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LEG1_CONMY This protein binds beta-galactoside. Its physiological function is not yet known.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Congerin I is a member of the galectin (animal beta-galactoside-binding lectin) family and is found in the skin mucus of conger eel. The galectin family proteins perform a variety of biological activities. Because of its histological localization and activity against marine bacteria and starfish embryos, congerin I is thought to take part in the eels' biological defense system against parasites. RESULTS: The crystal structure of congerin I has been determined in both lactose-liganded and ligand-free forms to 1. 5 A and 1.6 A resolution, respectively. The protein is a homodimer of 15 kDa subunits. Congerin I has a beta-sheet topology that is markedly different from those of known relatives. One of the beta-strands is exchanged between two identical subunits. This strand swap might increase the dimer stability. Of the known galectin complexes, congerin I forms the most extensive interaction with lactose molecules. Most of these interactions are substituted by similar interactions with water molecules, including a pi-electron hydrogen bond, in the ligand-free form. This observation indicates an increased affinity of congerin I for the ligand. CONCLUSIONS: The genes for congerin I and an isoform, congerin II, are known to have evolved under positive selection pressure. The strand swap and the modification in the carbohydrate-binding site might enhance the cross-linking activity, and should be the most apparent consequence of positive selection. The protein has been adapted to functioning in skin mucus that is in direct contact with surrounding environments by an enhancement in cross-linking activity. The structure of congerin I demonstrates the emergence of a new structure class by accelerated evolution under selection pressure.

High-resolution structure of the conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: emergence of a new structure class by accelerated evolution.,Shirai T, Mitsuyama C, Niwa Y, Matsui Y, Hotta H, Yamane T, Kamiya H, Ishii C, Ogawa T, Muramoto K Structure. 1999 Oct 15;7(10):1223-33. PMID:10545323[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Shirai T, Mitsuyama C, Niwa Y, Matsui Y, Hotta H, Yamane T, Kamiya H, Ishii C, Ogawa T, Muramoto K. High-resolution structure of the conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: emergence of a new structure class by accelerated evolution. Structure. 1999 Oct 15;7(10):1223-33. PMID:10545323

1c1f, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA