4r6c
X-ray diffraction in temporally and spatially resolved biomolecular science: the X-ray crystal structure of hen egg white lysozyme cocrystallized with Ta6Br12 and then a crystal soaked in K2PtBr6X-ray diffraction in temporally and spatially resolved biomolecular science: the X-ray crystal structure of hen egg white lysozyme cocrystallized with Ta6Br12 and then a crystal soaked in K2PtBr6
Structural highlights
FunctionLYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1] Publication Abstract from PubMedTime-resolved Laue protein crystallography at the European Synchrotron Radiation Facility (ESRF) opened up the field of sub-nanosecond protein crystal structure analyses. There are a limited number of such time-resolved studies in the literature. Why is this? The X-ray laser now gives us femtosecond (fs) duration pulses, typically 10 fs up to approximately 50 fs. Their use is attractive for the fastest time-resolved protein crystallography studies. It has been proposed that single molecules could even be studied with the advantage of being able to measure X-ray diffraction from a 'crystal lattice free' single molecule, with or without temporal resolved structural changes. This is altogether very challenging R&D. So as to assist this effort we have undertaken studies of metal clusters that bind to proteins, both 'fresh' and after repeated X-ray irradiation to assess their X-ray-photo-dynamics, namely Ta6Br12, K2PtI6 and K2PtBr6 bound to a test protein, hen egg white lysozyme. These metal complexes have the major advantage of being very recognisable shapes (pseudo spherical or octahedral) and thereby offer a start to (probably very difficult) single molecule electron density map interpretations, both static and dynamic. A further approach is to investigate the X-ray laser beam diffraction strength of a well scattering nano-cluster; an example from nature being the iron containing ferritin. Electron crystallography and single particle electron microscopy imaging offers alternatives to X-ray structural studies; our structural studies of crustacyanin, a 320 kDa protein carotenoid complex, can be extended either by electron based techniques or with the X-ray laser representing a fascinating range of options. General outlook remarks concerning X-ray, electron and neutron macromolecular crystallography as well as 'NMR crystallography' conclude the article. X-ray diffraction in temporally and spatially resolved biomolecular science.,Helliwell JR, Brink A, Kaenket S, Starkey VL, Tanley SW Faraday Discuss. 2015 Jan 21. PMID:25605312[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|