2ohy

From Proteopedia
Revision as of 12:23, 6 November 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

X-ray Crystal Structure of Tyrosine Aminomutase from streptomyces globisporusX-ray Crystal Structure of Tyrosine Aminomutase from streptomyces globisporus

Structural highlights

2ohy is a 2 chain structure with sequence from Streptomyces globisporus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TAM_STRGL Involved in the biosynthesis of the enediyne antitumor antibiotic C-1027. Catalyzes the MIO-dependent deamination of L-tyrosine generating the corresponding alpha,beta-unsaturated acid, (S)-beta-tyrosine.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The SgcC4 l-tyrosine 2,3-aminomutase (SgTAM) catalyzes the formation of (S)-beta-tyrosine in the biosynthetic pathway of the enediyne antitumor antibiotic C-1027. SgTAM is homologous to the histidine ammonia lyase family of enzymes whose activity is dependent on the methylideneimidazole-5-one (MIO) cofactor. Unlike the lyase enzymes, SgTAM catalyzes additional chemical transformations resulting in an overall stereospecific 1,2-amino shift in the substrate l-tyrosine to generate (S)-beta-tyrosine. Previously, we provided kinetic, spectroscopic, and mutagenesis data supporting the presence of MIO in the active site of SgTAM [Christenson, S. D.; Wu, W.; Spies, A.; Shen, B.; and Toney, M. D. (2003) Biochemistry 42, 12708-12718]. Here we report the first X-ray crystal structure of an MIO-containing aminomutase, SgTAM, and confirm the structural homology of SgTAM to ammonia lyases. Comparison of the structure of SgTAM to the l-tyrosine ammonia lyase from Rhodobacter sphaeroides provides insight into the structural basis for aminomutase activity. The results show that SgTAM has a closed active site well suited to retain ammonia and minimize the formation of lyase elimination products. The amino acid determinants for substrate recognition and catalysis can be predicted from the structure, setting the framework for detailed mechanistic investigations.

The structure of L-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway.,Christianson CV, Montavon TJ, Van Lanen SG, Shen B, Bruner SD Biochemistry. 2007 Jun 19;46(24):7205-14. Epub 2007 May 22. PMID:17516659[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Liu W, Christenson SD, Standage S, Shen B. Biosynthesis of the enediyne antitumor antibiotic C-1027. Science. 2002 Aug 16;297(5584):1170-3. PMID:12183628 doi:10.1126/science.1072110
  2. Christianson CV, Montavon TJ, Van Lanen SG, Shen B, Bruner SD. The structure of L-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway. Biochemistry. 2007 Jun 19;46(24):7205-14. Epub 2007 May 22. PMID:17516659 doi:10.1021/bi7003685
  3. Cooke HA, Bruner SD. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites. Biopolymers. 2010 Sep;93(9):802-10. PMID:20577998 doi:10.1002/bip.21500
  4. Christianson CV, Montavon TJ, Van Lanen SG, Shen B, Bruner SD. The structure of L-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway. Biochemistry. 2007 Jun 19;46(24):7205-14. Epub 2007 May 22. PMID:17516659 doi:10.1021/bi7003685

2ohy, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA