7sgo

From Proteopedia
Revision as of 13:43, 22 May 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of periplasmic domain of Helicobacter pylori FliL (residues 81 to 183) (crystal form B)Crystal structure of periplasmic domain of Helicobacter pylori FliL (residues 81 to 183) (crystal form B)

Structural highlights

7sgo is a 6 chain structure with sequence from Helicobacter pylori. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.695Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0A293T1P9_HELPX Controls the rotational direction of flagella during chemotaxis.[ARBA:ARBA00002254][RuleBase:RU364125]

Publication Abstract from PubMed

The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA5MotB2 units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protein FliL, forms an integral part of the Helicobacter pylori flagellar motor in a position that colocalizes with the stator. Cryogenic electron tomography reconstructions of the intact motor in whole wild-type cells and cells lacking FliL revealed that the periplasmic domain of FliL (FliL-C) forms 18 circumferentially positioned rings integrated with the 18 MotAB units. FliL-C formed partial rings in the crystal, and the crystal structure-based full ring model was consistent with the shape of the rings observed in situ. Our data suggest that each FliL ring is coaxially sandwiched between the MotA ring and the dimeric periplasmic MotB moiety of the stator unit and that the central hole of the FliL ring has density that is consistent with the plug/linker region of MotB in its extended, active conformation. Significant structural similarities were found between FliL-C and stomatin/prohibitin/flotillin/HflK/C domains of scaffolding proteins, suggesting that FliL acts as a scaffold. The binding energy released upon association of FliL with the stator units could be used to power the release of the plug helices. The finding that isolated FliL-C forms stable partial rings provides an insight into the putative mechanism by which the FliL rings assemble around the stator units.

The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation.,Tachiyama S, Chan KL, Liu X, Hathroubi S, Peterson B, Khan MF, Ottemann KM, Liu J, Roujeinikova A Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). pii: 2118401119. doi:, 10.1073/pnas.2118401119. PMID:35046042[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tachiyama S, Chan KL, Liu X, Hathroubi S, Peterson B, Khan MF, Ottemann KM, Liu J, Roujeinikova A. The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2118401119. PMID:35046042 doi:10.1073/pnas.2118401119

7sgo, resolution 2.69Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA