6iy6
Crystal structure of human cytosolic aspartyl-tRNA synthetase (DRS) in complex with glutathion-S transferase (GST) domains from Aminoacyl tRNA synthase complex-interacting multifunctional protein 2 (AIMP2) and glutamyl-prolyl-tRNA synthetase (EPRS)Crystal structure of human cytosolic aspartyl-tRNA synthetase (DRS) in complex with glutathion-S transferase (GST) domains from Aminoacyl tRNA synthase complex-interacting multifunctional protein 2 (AIMP2) and glutamyl-prolyl-tRNA synthetase (EPRS)
Structural highlights
Function[SYDC_HUMAN] Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. [SYEP_HUMAN] Catalyzes the attachment of the cognate amino acid to the corresponding tRNA in a two-step reaction: the amino acid is first activated by ATP to form a covalent intermediate with AMP and is then transferred to the acceptor end of the cognate tRNA. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the multisynthetase complex and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.[1] [2] [3] [AIMP2_HUMAN] Required for assembly and stability of the aminoacyl-tRNA synthase complex. Mediates ubiquitination and degradation of FUBP1, a transcriptional activator of MYC, leading to MYC down-regulation which is required for aveolar type II cell differentiation. Blocks MDM2-mediated ubiquitination and degradation of p53/TP53. Functions as a proapoptotic factor.[4] Publication Abstract from PubMedAminoacyl-tRNA synthetases (ARSs) play essential roles in protein biosynthesis as well as in other cellular processes, often using evolutionarily acquired domains. For possible cooperativity and synergistic effects, nine ARSs assemble into the multi-tRNA synthetase complex (MSC) with three scaffold proteins: aminoacyl-tRNA synthetase complex-interacting multifunctional proteins 1, 2 and 3 (AIMP1, AIMP2 and AIMP3). X-ray crystallographic methods were implemented in order to determine the structure of a ternary subcomplex of the MSC comprising aspartyl-tRNA synthetase (DRS) and two glutathione S-transferase (GST) domains from AIMP2 and glutamyl-prolyl-tRNA synthetase (AIMP2GST and EPRSGST, respectively). While AIMP2GST and EPRSGST interact via conventional GST heterodimerization, DRS strongly interacts with AIMP2GST via hydrogen bonds between the alpha7-beta9 loop of DRS and the beta2-alpha2 loop of AIMP2GST, where Ser156 of AIMP2GST is essential for the assembly. Structural analyses of DRS-AIMP2GST-EPRSGST reveal its pivotal architecture in the MSC and provide valuable insights into the overall assembly and conditionally required disassembly of the MSC. The DRS-AIMP2-EPRS subcomplex acts as a pivot in the multi-tRNA synthetase complex.,Hahn H, Park SH, Kim HJ, Kim S, Han BW IUCrJ. 2019 Aug 24;6(Pt 5):958-967. doi: 10.1107/S2052252519010790. eCollection, 2019 Sep 1. PMID:31576228[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|