6b2r
Crystal structure of Xanthomonas campestris OleA H285ACrystal structure of Xanthomonas campestris OleA H285A
Structural highlights
Publication Abstract from PubMedRenewable production of hydrocarbons is being pursued as a petroleum-independent source of commodity chemicals and replacement for biofuels. The bacterial biosynthesis of long-chain olefins represents one such platform. The process is initiated by OleA catalyzing the condensation of two fatty acyl-coenzyme A substrates to form a beta-keto acid. Here, the mechanistic role of the conserved His285 is investigated through mutagenesis, activity assays, and X-ray crystallography. Our data demonstrate that His285 is required for product formation, influences the thiolase nucleophile Cys143 and the acyl-enzyme intermediate before and after transesterification, and orchestrates substrate coordination as a defining component of an oxyanion hole. As a consequence, His285 plays a key role in enabling a mechanistic strategy in OleA that is distinct from other thiolases. The role of OleA His285 in orchestration of long-chain acyl-coenzyme A substrates.,Jensen MR, Goblirsch BR, Esler MA, Christenson JK, Mohamed FA, Wackett LP, Wilmot CM FEBS Lett. 2018 Feb 11. doi: 10.1002/1873-3468.13004. PMID:29430657[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|