| Structural highlightsFunction[MSL1_YEAST] Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA.[1] [SMD1_YEAST] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Also binds telomerase RNA and is required for its accumulation.[2] [3] [CEF1_YEAST] Involved in pre-mRNA splicing and cell cycle control. Required for the binding of the NTC complex (or PRP19-associated complex) components to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. Its absence leads to an arrest of the cell cycle, possibly due to the inefficient splicing of TUB1.[4] [5] [6] [7] [SN114_YEAST] Component of the U5 snRNP complex required for pre-mRNA splicing. Binds GTP. [SMD2_YEAST] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [PRP18_YEAST] Component of the U4/U5/U6 snRNP, binding principally to the u5 snRNP. It is not absolutely required for the second step of pre-mRNA splicing at low temperatures but is required at higher temperatures. It may stabilize a particular conformation of the U5 snRNP or orient the U5 snRNP within the U4/U5/U6 snRNP or within the spliceosome. [SLU7_YEAST] Essential protein involved in the second catalytic step of pre-mRNA splicing. Involved in the selection of 3'-type splice sites; this selection could be done via a 3'-splice site-binding factor, PRP16.[8] [9] [10] [11] [12] [13] [14] [15] [16] [RSMB_YEAST] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [PRP17_YEAST] May function in the second step of pre-mRNA splicing. Regulatory protein involved in replication and mitotic spindle formation and/or maintenance. Required for initiation and completion of S-phase and for initiation and completion of DNA replication. Might be required for the maintenance of microtubules. Essential only at elevated temperatures. [RUXF_YEAST] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [RUXE_YEAST] Involved in pre-mRNA splicing. Binds and is required for the stability of snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Involved in cap modification.[17] [SYF2_YEAST] Involved in pre-mRNA splicing and cell cycle control. As a component of the NTC complex (or PRP19-associated complex), associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. The cell cycle arrest of SYF2 defective cells may be due to the inefficient splicing of TUB1.[18] [19] [20] [CWC21_YEAST] Involved in pre-mRNA splicing. May function at or prior to the first catalytic step of splicing at the catalytic center of the spliceosome, together with ISY1. May do so by stabilizing the catalytic center or the position of the RNA substrate.[21] [22] [SLT11_YEAST] Involved in pre-mRNA splicing. Facilitates the cooperative formation of U2/U6 helix II in association with stem II in the spliceosome. Binds to RNA.[23] [24] [SMD3_YEAST] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Also binds telomerase RNA and is required for its accumulation.[25] [26] [PRP19_YEAST] Involved in pre-mRNA splicing. Acts a central component of the NTC complex (or PRP19-associated complex) that associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. Involved in DNA repair. [CWC2_YEAST] Involved in the first step of pre-mRNA splicing. Required for cell growth and cell cycle control. Plays a role in the levels of the U1, U4, U5 and U6 snRNAs and the maintenance of the U4/U6 snRNA complex. May provide the link between the "nineteen complex" NTC spliceosome protein complex and the spliceosome through the U6 snRNA. Associates predominantly with U6 snRNAs in assembled active spliceosomes. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5' splice site during the activation and catalytic phases of the spliceosome cycle. Binds also to U1, U4, U5 and U6 snRNAs and to pre-mRNAs, in vitro. Is not required for the Prp2-mediated remodeling of the activated spliceosome.[27] [28] [CLF1_YEAST] Involved in pre-mRNA splicing and cell cycle progression. Required for the spliceosome assembly by promoting the functional integration of the U4/U6.U5 tri-snRNP particle into the U1-, U2-dependent pre-spliceosome. Also recruits PRP19 to the spliceosome, as a component of the NTC complex (or PRP19-associated complex). The association of the NTC complex to the spliceosome mediates conformational rearrangement or stabilizes the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. Required for initiation of the DNA replication by binding the RNA replication origins, probably through its interaction with the origin recognition complex (ORC).[29] [30] [31] [32] [33] [BUD31_YEAST] Involved in pre-mRNA splicing. Important for bud site selection. [SYF1_YEAST] Involved in pre-mRNA splicing and cell cycle control. As a component of the NTC complex (or PRP19-associated complex), associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation.[34] [35] [RUXG_YEAST] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [PRP8_YEAST] Required for pre-spliceosome formation, which is the first step of pre-mRNA splicing. This protein is associated with snRNP U5. Has a role in branch site-3' splice site selection. Associates with the branch site-3' splice 3'-exon region. Also has a role in cell cycle.[36] [37] [38] [39] [SN309_YEAST] Involved in pre-mRNA splicing by stabilizing the NTC (or PRP19-associated complex). As a component of the NTC complex, associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation.[40] [41] [PRP45_YEAST] Involved in pre-mRNA splicing. Associated with the spliceosome throughout the splicing reactions, until after the second catalytic step.[42] [43] [CWC15_YEAST] Involved in pre-mRNA splicing. [CWC22_YEAST] May be involved in pre-mRNA splicing. [PRP46_YEAST] Involved in pre-mRNA splicing. May also be required for cell cycle progression at G2/M (By similarity).[44] [RU2A_YEAST] Involved in pre-mRNA splicing. Associates to U2 snRNA in a MSL1 dependent manner and is required for normal accumulation of U2 snRNA. Required for the spliceosome assembly and the efficient addition of U2 snRNP onto the pre-mRNA.[45] [PRP22_YEAST] Acts late in the splicing of pre-mRNA. Mediates the release of the spliced mRNA from spliceosomes.
Publication Abstract from PubMed
The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, B(act), C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.
Structure of the yeast spliceosomal postcatalytic P complex.,Liu S, Li X, Zhang L, Jiang J, Hill RC, Cui Y, Hansen KC, Zhou ZH, Zhao R Science. 2017 Dec 8;358(6368):1278-1283. doi: 10.1126/science.aar3462. Epub 2017 , Nov 16. PMID:29146870[46]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See AlsoReferences
- ↑ Tang J, Abovich N, Rosbash M. Identification and characterization of a yeast gene encoding the U2 small nuclear ribonucleoprotein particle B" protein. Mol Cell Biol. 1996 Jun;16(6):2787-95. PMID:8649387
- ↑ Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature. 1999 Sep 9;401(6749):177-80. PMID:10490028 doi:http://dx.doi.org/10.1038/43694
- ↑ Rymond BC. Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):848-52. PMID:8430095
- ↑ Tsai WY, Chow YT, Chen HR, Huang KT, Hong RI, Jan SP, Kuo NY, Tsao TY, Chen CH, Cheng SC. Cef1p is a component of the Prp19p-associated complex and essential for pre-mRNA splicing. J Biol Chem. 1999 Apr 2;274(14):9455-62. PMID:10092627
- ↑ Burns CG, Ohi R, Krainer AR, Gould KL. Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13789-94. PMID:10570151
- ↑ Burns CG, Ohi R, Mehta S, O'Toole ET, Winey M, Clark TA, Sugnet CW, Ares M Jr, Gould KL. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol. 2002 Feb;22(3):801-15. PMID:11784857
- ↑ Ohi R, Feoktistova A, McCann S, Valentine V, Look AT, Lipsick JS, Gould KL. Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Mol Cell Biol. 1998 Jul;18(7):4097-108. PMID:9632794
- ↑ Xu D, Friesen JD. Splicing factor slt11p and its involvement in formation of U2/U6 helix II in activation of the yeast spliceosome. Mol Cell Biol. 2001 Feb;21(4):1011-23. PMID:11158289 doi:http://dx.doi.org/10.1128/MCB.21.4.1011-1023.2001
- ↑ James SA, Turner W, Schwer B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA. 2002 Aug;8(8):1068-77. PMID:12212850
- ↑ Frank D, Patterson B, Guthrie C. Synthetic lethal mutations suggest interactions between U5 small nuclear RNA and four proteins required for the second step of splicing. Mol Cell Biol. 1992 Nov;12(11):5197-205. PMID:1406691
- ↑ Frank D, Guthrie C. An essential splicing factor, SLU7, mediates 3' splice site choice in yeast. Genes Dev. 1992 Nov;6(11):2112-24. PMID:1427075
- ↑ Jones MH, Frank DN, Guthrie C. Characterization and functional ordering of Slu7p and Prp17p during the second step of pre-mRNA splicing in yeast. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9687-91. PMID:7568198
- ↑ Ansari A, Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 1995 Aug 15;14(16):4001-9. PMID:7664739
- ↑ Brys A, Schwer B. Requirement for SLU7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and the 3' splice site. RNA. 1996 Jul;2(7):707-17. PMID:8756413
- ↑ Zhang X, Schwer B. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18. Nucleic Acids Res. 1997 Jun 1;25(11):2146-52. PMID:9153314
- ↑ Xu D, Field DJ, Tang SJ, Moris A, Bobechko BP, Friesen JD. Synthetic lethality of yeast slt mutations with U2 small nuclear RNA mutations suggests functional interactions between U2 and U5 snRNPs that are important for both steps of pre-mRNA splicing. Mol Cell Biol. 1998 Apr;18(4):2055-66. PMID:9528778
- ↑ Bordonne R, Tarassov I. The yeast SME1 gene encodes the homologue of the human E core protein. Gene. 1996 Oct 17;176(1-2):111-7. PMID:8918241
- ↑ Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics. 2000 Dec;156(4):1503-17. PMID:11102353
- ↑ Russell CS, Ben-Yehuda S, Dix I, Kupiec M, Beggs JD. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA. 2000 Nov;6(11):1565-72. PMID:11105756
- ↑ Dahan O, Kupiec M. Mutations in genes of Saccharomyces cerevisiae encoding pre-mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint. Nucleic Acids Res. 2002 Oct 15;30(20):4361-70. PMID:12384582
- ↑ Khanna M, Van Bakel H, Tang X, Calarco JA, Babak T, Guo G, Emili A, Greenblatt JF, Hughes TR, Krogan NJ, Blencowe BJ. A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300. RNA. 2009 Dec;15(12):2174-85. Epub 2009 Sep 29. PMID:19789211 doi:http://dx.doi.org/rna.1790509
- ↑ Grainger RJ, Barrass JD, Jacquier A, Rain JC, Beggs JD. Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. RNA. 2009 Dec;15(12):2161-73. Epub 2009 Oct 23. PMID:19854871 doi:http://dx.doi.org/rna.1908309
- ↑ Xu D, Friesen JD. Splicing factor slt11p and its involvement in formation of U2/U6 helix II in activation of the yeast spliceosome. Mol Cell Biol. 2001 Feb;21(4):1011-23. PMID:11158289 doi:http://dx.doi.org/10.1128/MCB.21.4.1011-1023.2001
- ↑ Xu D, Field DJ, Tang SJ, Moris A, Bobechko BP, Friesen JD. Synthetic lethality of yeast slt mutations with U2 small nuclear RNA mutations suggests functional interactions between U2 and U5 snRNPs that are important for both steps of pre-mRNA splicing. Mol Cell Biol. 1998 Apr;18(4):2055-66. PMID:9528778
- ↑ Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature. 1999 Sep 9;401(6749):177-80. PMID:10490028 doi:http://dx.doi.org/10.1038/43694
- ↑ Roy J, Zheng B, Rymond BC, Woolford JL Jr. Structurally related but functionally distinct yeast Sm D core small nuclear ribonucleoprotein particle proteins. Mol Cell Biol. 1995 Jan;15(1):445-55. PMID:7799953
- ↑ McGrail JC, Krause A, O'Keefe RT. The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing. Nucleic Acids Res. 2009 Jul;37(13):4205-17. Epub 2009 May 12. PMID:19435883 doi:http://dx.doi.org/gkp341
- ↑ Rasche N, Dybkov O, Schmitzova J, Akyildiz B, Fabrizio P, Luhrmann R. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J. 2012 Mar 21;31(6):1591-604. doi: 10.1038/emboj.2011.502. Epub 2012 Jan, 13. PMID:22246180 doi:http://dx.doi.org/10.1038/emboj.2011.502
- ↑ Chung S, McLean MR, Rymond BC. Yeast ortholog of the Drosophila crooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition. RNA. 1999 Aug;5(8):1042-54. PMID:10445879
- ↑ Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics. 2000 Dec;156(4):1503-17. PMID:11102353
- ↑ Russell CS, Ben-Yehuda S, Dix I, Kupiec M, Beggs JD. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA. 2000 Nov;6(11):1565-72. PMID:11105756
- ↑ Zhu W, Rainville IR, Ding M, Bolus M, Heintz NH, Pederson DS. Evidence that the pre-mRNA splicing factor Clf1p plays a role in DNA replication in Saccharomyces cerevisiae. Genetics. 2002 Apr;160(4):1319-33. PMID:11973290
- ↑ Wang Q, Hobbs K, Lynn B, Rymond BC. The Clf1p splicing factor promotes spliceosome assembly through N-terminal tetratricopeptide repeat contacts. J Biol Chem. 2003 Mar 7;278(10):7875-83. Epub 2002 Dec 31. PMID:12509417 doi:http://dx.doi.org/10.1074/jbc.M210839200
- ↑ Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics. 2000 Dec;156(4):1503-17. PMID:11102353
- ↑ Russell CS, Ben-Yehuda S, Dix I, Kupiec M, Beggs JD. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. RNA. 2000 Nov;6(11):1565-72. PMID:11105756
- ↑ Jackson SP, Lossky M, Beggs JD. Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. Mol Cell Biol. 1988 Mar;8(3):1067-75. PMID:2835658
- ↑ Abovich N, Rosbash M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell. 1997 May 2;89(3):403-12. PMID:9150140
- ↑ McPheeters DS, Muhlenkamp P. Spatial organization of protein-RNA interactions in the branch site-3' splice site region during pre-mRNA splicing in yeast. Mol Cell Biol. 2003 Jun;23(12):4174-86. PMID:12773561
- ↑ Yang K, Zhang L, Xu T, Heroux A, Zhao R. Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13817-22. Epub 2008 Sep 8. PMID:18779563
- ↑ Chen HR, Tsao TY, Chen CH, Tsai WY, Her LS, Hsu MM, Cheng SC. Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5406-11. PMID:10318896
- ↑ Chen HR, Jan SP, Tsao TY, Sheu YJ, Banroques J, Cheng SC. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol. 1998 Apr;18(4):2196-204. PMID:9528791
- ↑ Martinkova K, Lebduska P, Skruzny M, Folk P, Puta F. Functional mapping of Saccharomyces cerevisiae Prp45 identifies the SNW domain as essential for viability. J Biochem. 2002 Oct;132(4):557-63. PMID:12359070
- ↑ Albers M, Diment A, Muraru M, Russell CS, Beggs JD. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA. 2003 Jan;9(1):138-50. PMID:12554883
- ↑ Albers M, Diment A, Muraru M, Russell CS, Beggs JD. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA. 2003 Jan;9(1):138-50. PMID:12554883
- ↑ Caspary F, Seraphin B. The yeast U2A'/U2B complex is required for pre-spliceosome formation. EMBO J. 1998 Nov 2;17(21):6348-58. PMID:9799242 doi:http://dx.doi.org/10.1093/emboj/17.21.6348
- ↑ Liu S, Li X, Zhang L, Jiang J, Hill RC, Cui Y, Hansen KC, Zhou ZH, Zhao R. Structure of the yeast spliceosomal postcatalytic P complex. Science. 2017 Dec 8;358(6368):1278-1283. doi: 10.1126/science.aar3462. Epub 2017 , Nov 16. PMID:29146870 doi:http://dx.doi.org/10.1126/science.aar3462
|