2ft7

From Proteopedia
Revision as of 18:33, 3 March 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of Cu(I)azurin at pH 6, with the metal-binding loop sequence "CTFPGHSALM" replaced with "CTPHPM"Structure of Cu(I)azurin at pH 6, with the metal-binding loop sequence "CTFPGHSALM" replaced with "CTPHPM"

Structural highlights

2ft7 is a 1 chain structure with sequence from "bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:azu ("Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[AZUR_PSEAE] Transfers electrons from cytochrome c551 to cytochrome oxidase.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The main active-site loop of the copper-binding protein azurin (a cupredoxin) has been shortened from C(112)TFPGH(117)SALM(121) to C(112)TPH(115)PFM(118) (the native loop from the cupredoxin amicyanin) and also to C(112)TPH(115)PM(117). The Cu(II) site structure is almost unaffected by shortening, as is that of the Cu(I) center at alkaline pH in the variant with the C(112)TPH(115)PM(117) loop sequence. Subtle spectroscopic differences due to alterations in the spin density distribution at the Cu(II) site can be attributed mainly to changes in the hydrogen-bonding pattern. Electron transfer is almost unaffected by the introduction of the C(112)TPH(115)PFM(118) loop, but removal of the Phe residue has a sizable effect on reactivity, probably because of diminished homodimer formation. At mildly acidic pH values, the His-115 ligand protonates and dissociates from the cuprous ion, an effect that has a dramatic influence on the reactivity of cupredoxins. These studies demonstrate that the amicyanin loop adopts a conformation identical to that found in the native protein when introduced into azurin, that a shorter than naturally occurring C-terminal active-site loop can support a functional T1 copper site, that CTPHPM is the minimal loop length required for binding this ubiquitous electron transfer center, and that the length and sequence of a metal-binding loop regulates a range of structural and functional features of the active site of a metalloprotein.

Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin.,Li C, Yanagisawa S, Martins BM, Messerschmidt A, Banfield MJ, Dennison C Proc Natl Acad Sci U S A. 2006 May 9;103(19):7258-63. Epub 2006 May 1. PMID:16651527[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Li C, Yanagisawa S, Martins BM, Messerschmidt A, Banfield MJ, Dennison C. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7258-63. Epub 2006 May 1. PMID:16651527

2ft7, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA