6v5d

From Proteopedia
Revision as of 13:35, 26 February 2020 by OCA (talk | contribs)
Jump to navigation Jump to search

EROS3 RDC and NOE Derived Ubiquitin EnsembleEROS3 RDC and NOE Derived Ubiquitin Ensemble

Structural highlights

6v5d is a 1 chain structure with sequence from Human. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:UBC (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[UBC_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1] [2]

Publication Abstract from PubMed

Nuclear magnetic resonance (NMR) has the unique advantage of elucidating the structure and dynamics of biomolecules in solution at physiological temperatures, where they are in constant movement on timescales from picoseconds to milliseconds. Such motions have been shown to be critical for enzyme catalysis, allosteric regulation, and molecular recognition. With NMR being particularly sensitive to these timescales, detailed information about the kinetics can be acquired. However, nearly all methods of NMR-based biomolecular structure determination neglect kinetics, which introduces a large approximation to the underlying physics, limiting both structural resolution and the ability to accurately determine molecular flexibility. Here we present the Kinetic Ensemble approach that uses a hierarchy of interconversion rates between a set of ensemble members to rigorously calculate Nuclear Overhauser Effect (NOE) intensities. It can be used to simultaneously refine both temporal and structural coordinates. By generalizing ideas from the extended model free approach, the method can analyze the amplitudes and kinetics of motions anywhere along the backbone or side chains. Furthermore, analysis of a large set of crystal structures suggests that NOE data contains a surprising amount of high-resolution information that is better modeled using our approach. The Kinetic Ensemble approach provides the means to unify numerous types of experiments under a single quantitative framework and more fully characterize and exploit kinetically distinct protein states. While we apply the approach here to the protein ubiquitin and cross validate it with previously derived datasets, the approach can be applied to any protein for which NOE data is available.

Enhancing NMR derived ensembles with kinetics on multiple timescales.,Smith CA, Mazur A, Rout AK, Becker S, Lee D, de Groot BL, Griesinger C J Biomol NMR. 2019 Dec 14. pii: 10.1007/s10858-019-00288-8. doi:, 10.1007/s10858-019-00288-8. PMID:31838619[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  2. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  3. Smith CA, Mazur A, Rout AK, Becker S, Lee D, de Groot BL, Griesinger C. Enhancing NMR derived ensembles with kinetics on multiple timescales. J Biomol NMR. 2019 Dec 14. pii: 10.1007/s10858-019-00288-8. doi:, 10.1007/s10858-019-00288-8. PMID:31838619 doi:http://dx.doi.org/10.1007/s10858-019-00288-8
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA