2khx
Drosha double-stranded RNA binding motifDrosha double-stranded RNA binding motif
Structural highlights
Function[RNC_HUMAN] Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies.[1] [2] [3] [4] [5] [6] [7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Drosha is a nuclear RNase III enzyme that initiates processing of regulatory microRNA. Together with partner protein DiGeorge syndrome critical region 8 (DGCR8), it forms the Microprocessor complex, which cleaves precursor transcripts called primary microRNA to produce hairpin precursor microRNA. In addition to two RNase III catalytic domains, Drosha contains a C-terminal double-stranded RNA-binding domain (dsRBD). To gain insight into the function of this domain, we determined the nuclear magnetic resonance (NMR) solution structure. RESULTS: We report here the solution structure of the dsRBD from Drosha (Drosha-dsRBD). The alphabetabetabetaalpha fold is similar to other dsRBD structures. A unique extended loop distinguishes this domain from other dsRBDs of known structure. CONCLUSIONS: Despite uncertainties about RNA-binding properties of the Drosha-dsRBD, its structure suggests it retains RNA-binding features. We propose that this domain may contribute to substrate recognition in the Drosha-DGCR8 Microprocessor complex. Solution structure of the Drosha double-stranded RNA-binding domain.,Mueller GA, Miller MT, Derose EF, Ghosh M, London RE, Hall TM Silence. 2010 Jan 12;1(1):2. PMID:20226070[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|