2k60
NMR structure of calcium-loaded STIM1 EF-SAMNMR structure of calcium-loaded STIM1 EF-SAM
Structural highlights
Disease[STIM1_HUMAN] Defects in STIM1 are the cause of immune dysfunction with T-cell inactivation due to calcium entry defect type 2 (IDTICED2) [MIM:612783]. IDTICED2 is an immune disorder characterized by recurrent infections, impaired T-cell activation and proliferative response, decreased T-cell production of cytokines, lymphadenopathy, and normal lymphocytes counts and serum immunoglobulin levels. Additional features include thrombocytopenia, autoimmune hemolytic anemia, non-progressive myopathy, partial iris hypoplasia, hepatosplenomegaly and defective enamel dentition.[1] Function[STIM1_HUMAN] Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release-activated Ca(2+) (CRAC) channel subunit, TMEM142A/ORAI1.[2] [3] [4] [5] [6] [7] [8] [9] [10] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedStromal interaction molecule-1 (STIM1) activates store-operated Ca2+ entry (SOCE) in response to diminished luminal Ca2+ levels. Here, we present the atomic structure of the Ca2+-sensing region of STIM1 consisting of the EF-hand and sterile alpha motif (SAM) domains (EF-SAM). The canonical EF-hand is paired with a previously unidentified EF-hand. Together, the EF-hand pair mediates mutually indispensable hydrophobic interactions between the EF-hand and SAM domains. Structurally critical mutations in the canonical EF-hand, "hidden" EF-hand, or SAM domain disrupt Ca2+ sensitivity in oligomerization via destabilization of the entire EF-SAM entity. In mammalian cells, EF-SAM destabilization mutations within full-length STIM1 induce punctae formation and activate SOCE independent of luminal Ca2+. We provide atomic resolution insight into the molecular basis for STIM1-mediated SOCE initiation and show that the folded/unfolded state of the Ca2+-sensing region of STIM is crucial to SOCE regulation. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry.,Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M Cell. 2008 Oct 3;135(1):110-22. PMID:18854159[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- Human
- Large Structures
- Ikura, M
- Stathopulos, P B
- Calcium transport
- Ef-hand
- Ef-sam
- Endoplasmic reticulum luminal calcium sensor
- Glycoprotein
- Ion transport
- Membrane
- Phosphoprotein
- Sam domain
- Signaling protein
- Soce
- Stim1
- Store operated calcium entry regulator
- Stromal interaction molecule
- Transmembrane
- Transport
- Transport protein