Human beta-Hexosaminidase BHuman beta-Hexosaminidase B

Structural highlights

1o7a is a 6 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Activity:Beta-N-acetylhexosaminidase, with EC number 3.2.1.52
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[HEXB_HUMAN] Defects in HEXB are the cause of GM2-gangliosidosis type 2 (GM2G2) [MIM:268800]; also known as Sandhoff disease. GM2-gangliosidosis is an autosomal recessive lysosomal storage disease marked by the accumulation of GM2 gangliosides in the neuronal cells. GM2G2 is clinically indistinguishable from GM2-gangliosidosis type 1, presenting startle reactions, early blindness, progressive motor and mental deterioration, macrocephaly and cherry-red spots on the macula.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Function

[HEXB_HUMAN] Responsible for the degradation of GM2 gangliosides, and a variety of other molecules containing terminal N-acetyl hexosamines, in the brain and other tissues.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Human lysosomal beta-hexosaminidases are dimeric enzymes composed of alpha and beta-chains, encoded by the genes HEXA and HEXB. They occur in three isoforms, the homodimeric hexosaminidases B (betabeta) and S (alphaalpha), and the heterodimeric hexosaminidase A (alphabeta), where dimerization is required for catalytic activity. Allelic variations in the HEXA and HEXB genes cause the fatal inborn errors of metabolism Tay-Sachs disease and Sandhoff disease, respectively. Here, we present the crystal structure of a complex of human beta-hexosaminidase B with a transition state analogue inhibitor at 2.3A resolution (pdb 1o7a). On the basis of this structure and previous studies on related enzymes, a retaining double-displacement mechanism for glycosyl hydrolysis by beta-hexosaminidase B is proposed. In the dimer structure, which is derived from an analysis of crystal packing, most of the mutations causing late-onset Sandhoff disease reside near the dimer interface and are proposed to interfere with correct dimer formation. The structure reported here is a valid template also for the dimeric structures of beta-hexosaminidase A and S.

The X-ray crystal structure of human beta-hexosaminidase B provides new insights into Sandhoff disease.,Maier T, Strater N, Schuette CG, Klingenstein R, Sandhoff K, Saenger W J Mol Biol. 2003 May 2;328(3):669-81. PMID:12706724[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Banerjee P, Siciliano L, Oliveri D, McCabe NR, Boyers MJ, Horwitz AL, Li SC, Dawson G. Molecular basis of an adult form of beta-hexosaminidase B deficiency with motor neuron disease. Biochem Biophys Res Commun. 1991 Nov 27;181(1):108-15. PMID:1720305
  2. Wakamatsu N, Kobayashi H, Miyatake T, Tsuji S. A novel exon mutation in the human beta-hexosaminidase beta subunit gene affects 3' splice site selection. J Biol Chem. 1992 Feb 5;267(4):2406-13. PMID:1531140
  3. Bolhuis PA, Ponne NJ, Bikker H, Baas F, Vianney de Jong JM. Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the beta-chain of beta-hexosaminidase results in a labile enzyme. Biochim Biophys Acta. 1993 Sep 8;1182(2):142-6. PMID:8357844
  4. Kuroki Y, Itoh K, Nadaoka Y, Tanaka T, Sakuraba H. A novel missense mutation (C522Y) is present in the beta-hexosaminidase beta-subunit gene of a Japanese patient with infantile Sandhoff disease. Biochem Biophys Res Commun. 1995 Jul 17;212(2):564-71. PMID:7626071 doi:http://dx.doi.org/10.1006/bbrc.1995.2007
  5. Gomez-Lira M, Sangalli A, Mottes M, Perusi C, Pignatti PF, Rizzuto N, Salviati A. A common beta hexosaminidase gene mutation in adult Sandhoff disease patients. Hum Genet. 1995 Oct;96(4):417-22. PMID:7557963
  6. Zhang ZX, Wakamatsu N, Akerman BR, Mules EH, Thomas GH, Gravel RA. A second, large deletion in the HEXB gene in a patient with infantile Sandhoff disease. Hum Mol Genet. 1995 Apr;4(4):777-80. PMID:7633435
  7. Redonnet-Vernhet I, Mahuran DJ, Salvayre R, Dubas F, Levade T. Significance of two point mutations present in each HEXB allele of patients with adult GM2 gangliosidosis (Sandhoff disease) homozygosity for the Ile207-->Val substitution is not associated with a clinical or biochemical phenotype. Biochim Biophys Acta. 1996 Nov 15;1317(2):127-33. PMID:8950198
  8. Narkis G, Adam A, Jaber L, Pennybacker M, Proia RL, Navon R. Molecular basis of heat labile hexosaminidase B among Jews and Arabs. Hum Mutat. 1997;10(6):424-9. PMID:9401004 doi:<424::AID-HUMU2>3.0.CO;2-D 10.1002/(SICI)1098-1004(1997)10:6<424::AID-HUMU2>3.0.CO;2-D
  9. Fujimaru M, Tanaka A, Choeh K, Wakamatsu N, Sakuraba H, Isshiki G. Two mutations remote from an exon/intron junction in the beta-hexosaminidase beta-subunit gene affect 3'-splice site selection and cause Sandhoff disease. Hum Genet. 1998 Oct;103(4):462-9. PMID:9856491
  10. Hou Y, McInnes B, Hinek A, Karpati G, Mahuran D. A Pro504 --> Ser substitution in the beta-subunit of beta-hexosaminidase A inhibits alpha-subunit hydrolysis of GM2 ganglioside, resulting in chronic Sandhoff disease. J Biol Chem. 1998 Aug 14;273(33):21386-92. PMID:9694901
  11. Maier T, Strater N, Schuette CG, Klingenstein R, Sandhoff K, Saenger W. The X-ray crystal structure of human beta-hexosaminidase B provides new insights into Sandhoff disease. J Mol Biol. 2003 May 2;328(3):669-81. PMID:12706724

1o7a, resolution 2.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA