4qqd

From Proteopedia
Revision as of 16:46, 22 February 2023 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal Structure of tandem tudor domains of UHRF1 in complex with a small organic moleculeCrystal Structure of tandem tudor domains of UHRF1 in complex with a small organic molecule

Structural highlights

4qqd is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

UHRF1_HUMAN Note=Defects in UHRF1 may be a cause of cancers. Overexpressed in many different forms of human cancers, including bladder, breast, cervical, colorectal and prostate cancers, as well as pancreatic adenocarcinomas, rhabdomyosarcomas and gliomas. Plays an important role in the correlation of histone modification and gene silencing in cancer progression. Expression is associated with a poor prognosis in patients with various cancers, suggesting that it participates in cancer progression.

Function

UHRF1_HUMAN Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Publication Abstract from PubMed

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.

A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II.,Liu Y, Iqbal A, Li W, Ni Z, Wang Y, Ramprasad J, Abraham KJ, Zhang M, Zhao DY, Qin S, Loppnau P, Jiang H, Guo X, Brown PJ, Zhen X, Xu G, Mekhail K, Ji X, Bedford MT, Greenblatt JF, Min J Nat Commun. 2022 Sep 16;13(1):5453. doi: 10.1038/s41467-022-33229-5. PMID:36114190[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res. 2000 Jan 1;60(1):121-8. PMID:10646863
  2. Arima Y, Hirota T, Bronner C, Mousli M, Fujiwara T, Niwa S, Ishikawa H, Saya H. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells. 2004 Feb;9(2):131-42. PMID:15009091
  3. Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 2004 Oct 7;23(46):7601-10. PMID:15361834 doi:10.1038/sj.onc.1208053
  4. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007 Sep 21;317(5845):1760-4. Epub 2007 Aug 2. PMID:17673620 doi:10.1126/science.1147939
  5. Karagianni P, Amazit L, Qin J, Wong J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol. 2008 Jan;28(2):705-17. Epub 2007 Oct 29. PMID:17967883 doi:10.1128/MCB.01598-07
  6. Kim JK, Esteve PO, Jacobsen SE, Pradhan S. UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res. 2009 Feb;37(2):493-505. doi: 10.1093/nar/gkn961. Epub 2008 Dec, 4. PMID:19056828 doi:10.1093/nar/gkn961
  7. Felle M, Joppien S, Nemeth A, Diermeier S, Thalhammer V, Dobner T, Kremmer E, Kappler R, Langst G. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 2011 Oct;39(19):8355-65. doi: 10.1093/nar/gkr528. Epub 2011, Jul 10. PMID:21745816 doi:10.1093/nar/gkr528
  8. Guan D, Factor D, Liu Y, Wang Z, Kao HY. The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene. 2012 Sep 3. doi: 10.1038/onc.2012.406. PMID:22945642 doi:10.1038/onc.2012.406
  9. Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, Shi YG, Xu Y, Patel DJ, Shi Y. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression. Mol Cell. 2011 Jul 22;43(2):275-84. PMID:21777816 doi:10.1016/j.molcel.2011.07.006
  10. Liu Y, Iqbal A, Li W, Ni Z, Wang Y, Ramprasad J, Abraham KJ, Zhang M, Zhao DY, Qin S, Loppnau P, Jiang H, Guo X, Brown PJ, Zhen X, Xu G, Mekhail K, Ji X, Bedford MT, Greenblatt JF, Min J. A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II. Nat Commun. 2022 Sep 16;13(1):5453. doi: 10.1038/s41467-022-33229-5. PMID:36114190 doi:http://dx.doi.org/10.1038/s41467-022-33229-5

4qqd, resolution 2.28Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA