Structural highlights
Function
[RPOZ_ECOLI] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.[HAMAP-Rule:MF_00366] [RPOA_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059] [RPOC_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01322] [RPOB_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01321] [Q0P6L9_ECOLX] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.[HAMAP-Rule:MF_00963][SAAS:SAAS00535554]
Publication Abstract from PubMed
TraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp, but the structural basis for regulation by these factors remains unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis revealed TraR-induced changes in RNAP conformational heterogeneity. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the betalobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on sigma(70) region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.
E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.,Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA Elife. 2019 Dec 16;8. pii: 49375. doi: 10.7554/eLife.49375. PMID:31841111[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. Elife. 2019 Dec 16;8. pii: 49375. doi: 10.7554/eLife.49375. PMID:31841111 doi:http://dx.doi.org/10.7554/eLife.49375