3ra0

From Proteopedia
Revision as of 08:55, 15 June 2022 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal Structure of a StWhy2 K67A-dT32 complexCrystal Structure of a StWhy2 K67A-dT32 complex

Structural highlights

3ra0 is a 2 chain structure with sequence from Potato. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:StWhy2 (Potato)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[WHY2_SOLTU] Single-stranded DNA-binding protein that may be involved in the maintenance of mitochondrial genome stability by preventing break-induced DNA rearrangements.[1]

Publication Abstract from PubMed

All organisms have evolved specialized DNA repair mechanisms in order to protect their genome against detrimental lesions such as DNA double-strand breaks. In plant organelles, these damages are repaired either through recombination or through a microhomology-mediated break-induced replication pathway. Whirly proteins are modulators of this second pathway in both chloroplasts and mitochondria. In this precise pathway, tetrameric Whirly proteins are believed to bind single-stranded DNA and prevent spurious annealing of resected DNA molecules with other regions in the genome. In this study, we add a new layer of complexity to this model by showing through atomic force microscopy that tetramers of the potato Whirly protein WHY2 further assemble into hexamers of tetramers, or 24-mers, upon binding long DNA molecules. This process depends on tetramer-tetramer interactions mediated by K67, a highly conserved residue among plant Whirly proteins. Mutation of this residue abolishes the formation of 24-mers without affecting the protein structure or the binding to short DNA molecules. Importantly, we show that an Arabidopsis Whirly protein mutated for this lysine is unable to rescue the sensitivity of a Whirly-less mutant plant to a DNA double-strand break inducing agent.

A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.,Cappadocia L, Parent JS, Zampini E, Lepage E, Sygusch J, Brisson N Nucleic Acids Res. 2011 Sep 12. PMID:21911368[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Cappadocia L, Parent JS, Zampini E, Lepage E, Sygusch J, Brisson N. A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Res. 2011 Sep 12. PMID:21911368 doi:10.1093/nar/gkr740
  2. Cappadocia L, Parent JS, Zampini E, Lepage E, Sygusch J, Brisson N. A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Res. 2011 Sep 12. PMID:21911368 doi:10.1093/nar/gkr740

3ra0, resolution 2.45Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA