Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 15 min soak in 10 mM Mg2+Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 15 min soak in 10 mM Mg2+

Structural highlights

6ozr is a 4 chain structure with sequence from Lk3 transgenic mice. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , ,
NonStd Res:
Gene:Endov (LK3 transgenic mice)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[ENDOV_MOUSE] Endoribonuclease that specifically cleaves inosine-containing RNAs: cleaves RNA at the second phosphodiester bond 3' to inosine. Has strong preference for single-stranded RNAs (ssRNAs) toward double-stranded RNAs (dsRNAs). Cleaves mRNAs and tRNAs containing inosine. Also able to cleave structure-specific dsRNA substrates containing the specific sites 5'-IIUI-3' and 5'-UIUU-3'. Inosine is present in a number of RNAs following editing; the function of inosine-specific endoribonuclease is still unclear: it could either play a regulatory role in edited RNAs, or be involved in antiviral response by removing the hyperedited long viral dsRNA genome that has undergone A-to-I editing. Binds branched DNA structures (By similarity).

Publication Abstract from PubMed

Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn(2+) that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.

Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase.,Wu J, Samara NL, Kuraoka I, Yang W Mol Cell. 2019 Oct 3;76(1):44-56.e3. doi: 10.1016/j.molcel.2019.06.046. Epub 2019, Aug 20. PMID:31444105[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Wu J, Samara NL, Kuraoka I, Yang W. Evolution of Inosine-Specific Endonuclease V from Bacterial DNase to Eukaryotic RNase. Mol Cell. 2019 Oct 3;76(1):44-56.e3. doi: 10.1016/j.molcel.2019.06.046. Epub 2019, Aug 20. PMID:31444105 doi:http://dx.doi.org/10.1016/j.molcel.2019.06.046

6ozr, resolution 2.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA