Crystal Structure of the third KH domain of hnRNP K at 0.95A resolutionCrystal Structure of the third KH domain of hnRNP K at 0.95A resolution

Structural highlights

1zzk is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[HNRPK_HUMAN] One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The heterogeneous nuclear ribonucleoprotein (hnRNP) K is implicated in multiple functions in the regulation of gene expression and acts as a hub at the intersection of signaling pathways and processes involving nucleic acids. Central to its function is its ability to bind both ssDNA and ssRNA via its KH (hnRNP K homology) domains. We determined crystal structures of hnRNP K KH3 domain complexed with 15-mer and 6-mer (CTC(4)) ssDNAs at 2.4 and 1.8 A resolution, respectively, and show that the KH3 domain binds specifically to both TCCC and CCCC sequences. In parallel, we used NMR to compare the binding affinity and mode of interaction of the KH3 domain with several ssRNA ligands and CTC(4) ssDNA. Based on a structure alignment of the KH3-CTC(4) complex with known structures of other KH domains in complex with ssRNA, we discuss recognition of tetranucleotide sequences by KH domains.

X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids.,Backe PH, Messias AC, Ravelli RB, Sattler M, Cusack S Structure. 2005 Jul;13(7):1055-67. PMID:16004877[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Moumen A, Masterson P, O'Connor MJ, Jackson SP. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell. 2005 Dec 16;123(6):1065-78. PMID:16360036 doi:http://dx.doi.org/10.1016/j.cell.2005.09.032
  2. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010 Aug 6;142(3):409-19. doi: 10.1016/j.cell.2010.06.040. PMID:20673990 doi:10.1016/j.cell.2010.06.040
  3. Pelisch F, Pozzi B, Risso G, Munoz MJ, Srebrow A. DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation. J Biol Chem. 2012 Aug 31;287(36):30789-99. doi: 10.1074/jbc.M112.390120. Epub, 2012 Jul 23. PMID:22825850 doi:http://dx.doi.org/10.1074/jbc.M112.390120
  4. Backe PH, Messias AC, Ravelli RB, Sattler M, Cusack S. X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure. 2005 Jul;13(7):1055-67. PMID:16004877 doi:http://dx.doi.org/10.1016/j.str.2005.04.008

1zzk, resolution 0.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA