6wx6
Cryo-EM Structure of Human Apoferritin Light Chain Vitrified Using Back-it-upCryo-EM Structure of Human Apoferritin Light Chain Vitrified Using Back-it-up
Structural highlights
Disease[FRIL_HUMAN] Defects in FTL are the cause of hereditary hyperferritinemia-cataract syndrome (HHCS) [MIM:600886]. It is an autosomal dominant disease characterized by early-onset bilateral cataract. Affected patients have elevated level of circulating ferritin. HHCS is caused by mutations in the iron responsive element (IRE) of the FTL gene.[1] Defects in FTL are the cause of neurodegeneration with brain iron accumulation type 3 (NBIA3) [MIM:606159]; also known as adult-onset basal ganglia disease. It is a movement disorder with heterogeneous presentations starting in the fourth to sixth decade. It is characterized by a variety of neurological signs including parkinsonism, ataxia, corticospinal signs, mild nonprogressive cognitive deficit and episodic psychosis. It is linked with decreased serum ferritin levels.[2] [3] Function[FRIL_HUMAN] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity).[4] [5] Publication Abstract from PubMedBlotting times for conventional cryoEM specimen preparation complicate time-resolved studies and lead to some specimens adopting preferred orientations or denaturing at the air-water interface. Here, it is shown that solution sprayed onto one side of a holey cryoEM grid can be wicked through the grid by a glass-fiber filter held against the opposite side, often called the `back', of the grid, producing a film suitable for vitrification. This process can be completed in tens of milliseconds. Ultrasonic specimen application and through-grid wicking were combined in a high-speed specimen-preparation device that was named `Back-it-up' or BIU. The high liquid-absorption capacity of the glass fiber compared with self-wicking grids makes the method relatively insensitive to the amount of sample applied. Consequently, through-grid wicking produces large areas of ice that are suitable for cryoEM for both soluble and detergent-solubilized protein complexes. The speed of the device increases the number of views for a specimen that suffers from preferred orientations. Through-grid wicking enables high-speed cryoEM specimen preparation.,Tan YZ, Rubinstein JL Acta Crystallogr D Struct Biol. 2020 Nov 1;76(Pt 11):1092-1103. doi:, 10.1107/S2059798320012474. Epub 2020 Oct 13. PMID:33135680[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|