Human Carbonic Anhydrase II in complex with BrinzolamideHuman Carbonic Anhydrase II in complex with Brinzolamide

Structural highlights

4m2r is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]

Function

CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]

Publication Abstract from PubMed

Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes that catalyze the reversible hydration of carbon dioxide and bicarbonate. Their pivotal role in metabolism, ubiquitous nature, and multiple isoforms (CA I-XIV) has made CAs an attractive drug target in clinical applications. The usefulness of CA inhibitors (CAIs) in the treatment of glaucoma and epilepsy are well documented. In addition several isoforms of CAs (namely, CA IX) also serve as biological markers for certain tumors, and therefore they have the potential for useful applications in the treatment of cancer. This is a structural study on the binding interactions of the widely used CA inhibitory drugs brinzolamide (marketed as Azopt(R)) and dorzolamide (marketed as Trusopt(R)) with CA II and a CA IX-mimic, which was created via site-directed mutagenesis of CA II cDNA such that the active site resembles that of CA IX. Also the inhibition of CA II and CA IX and molecular docking reveal brinzolamide to be a more potent inhibitor among the other catalytically active CA isoforms compared to dorzolamide. The structures show that the tail end of the sulfonamide inhibitor is critical in forming stabilizing interactions that influence tight binding; therefore, for future drug design it is the tail moiety that will ultimately determine isoform specificity.

Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases.,Pinard MA, Boone CD, Rife BD, Supuran CT, McKenna R Bioorg Med Chem. 2013 Nov 15;21(22):7210-5. doi: 10.1016/j.bmc.2013.08.033. Epub , 2013 Aug 28. PMID:24090602[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
  8. Pinard MA, Boone CD, Rife BD, Supuran CT, McKenna R. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. Bioorg Med Chem. 2013 Nov 15;21(22):7210-5. doi: 10.1016/j.bmc.2013.08.033. Epub , 2013 Aug 28. PMID:24090602 doi:http://dx.doi.org/10.1016/j.bmc.2013.08.033

4m2r, resolution 1.99Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA