3bl6

From Proteopedia
Revision as of 13:45, 12 January 2022 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase in complex with formycin ACrystal structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase in complex with formycin A

Structural highlights

3bl6 is a 1 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:pfs (Staphylococcus aureus)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[MTNN_STAAM] Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'-methylthioribose and S-ribosylhomocysteine, respectively (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH) and plays a key role in four metabolic processes: biological methylation, polyamine biosynthesis, methionine recycling and bacterial quorum sensing. The absence of the nucleosidase in mammalian species has implicated this enzyme as a target for antimicrobial drug design. MTAN from the pathogenic bacterium Staphylococcus aureus (SaMTAN) has been kinetically characterized and its structure has been determined in complex with the transition-state analogue formycin A (FMA) at 1.7 A resolution. A comparison of the SaMTAN-FMA complex with available Escherichia coli MTAN structures shows strong conservation of the overall structure and in particular of the active site. The presence of an extra water molecule, which forms a hydrogen bond to the O4' atom of formycin A in the active site of SaMTAN, produces electron withdrawal from the ribosyl group and may explain the lower catalytic efficiency that SaMTAN exhibits when metabolizing MTA and SAH relative to the E. coli enzyme. The implications of this structure for broad-based antibiotic design are discussed.

Structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase.,Siu KK, Lee JE, Smith GD, Horvatin-Mrakovcic C, Howell PL Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 May 1;64(Pt, 5):343-50. Epub 2008 Apr 30. PMID:18453700[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Siu KK, Lee JE, Smith GD, Horvatin-Mrakovcic C, Howell PL. Structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 May 1;64(Pt, 5):343-50. Epub 2008 Apr 30. PMID:18453700 doi:10.1107/S1744309108009275

3bl6, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA