9icd
CATALYTIC MECHANISM OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE: IMPLICATIONS FROM THE STRUCTURES OF MAGNESIUM-ISOCITRATE AND NADP+ COMPLEXESCATALYTIC MECHANISM OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE: IMPLICATIONS FROM THE STRUCTURES OF MAGNESIUM-ISOCITRATE AND NADP+ COMPLEXES
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structures of NADP+ and magnesium isocitrate bound to the NADP(+)-dependent isocitrate dehydrogenase of Escherichia coli have been determined and refined at 2.5-A resolution. NADP+ is bound by the large domain of isocitrate dehydrogenase, a structure that has little similarity to the supersecondary structure of the nucleotide-binding domain of the lactate dehydrogenase-like family of nucleotide-binding proteins. The coenzyme-binding site confirms the fundamentally different evolution of the isocitrate dehydrogenase-like and the lactate dehydrogenase-like classes of nucleotide-binding proteins. In the magnesium-isocitrate complex, magnesium is coordinated to the alpha-carboxylate and alpha-hydroxyl oxygen of isocitrate in a manner suitable for stabilization of a negative charge on the hydroxyl oxygen during both the dehydrogenation and decarboxylation steps of the conversion of isocitrate to alpha-ketoglutarate. The metal ion is also coordinated by aspartate side chains 283' (of the second subunit of the dimer) and 307 and two water molecules in a roughly octahedral arrangement. On the basis of the geometry of the active site, the base functioning in the dehydrogenation step is most likely aspartate 283'. E. coli isocitrate dehydrogenase transfers a hydride stereospecifically to the A-side of NADP+, and models for a reactive ternary complex consistent with this stereospecificity are discussed. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes.,Hurley JH, Dean AM, Koshland DE Jr, Stroud RM Biochemistry. 1991 Sep 3;30(35):8671-8. PMID:1888729[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|