2h2e

From Proteopedia
Revision as of 10:29, 17 March 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of Rubisco LSMT bound to AzaAdoMet and LysineStructure of Rubisco LSMT bound to AzaAdoMet and Lysine

Structural highlights

2h2e is a 3 chain structure with sequence from Garden pea. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:RBCMT (Garden pea)
Activity:[Ribulose-bisphosphate_carboxylase-lysine_N-methyltransferase [Ribulose-bisphosphate carboxylase]-lysine N-methyltransferase], with EC number 2.1.1.127
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[RBCMT_PEA] Methylates 'Lys-14' of the large subunit of RuBisCO. Can also use with lower efficiency chloroplastic fructose-bisphosphate aldolases and gamma-tocopherol methyltransferase as substrates, but not a cytosolic aldolase.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

SET domain enzymes represent a distinct family of protein lysine methyltransferases in eukaryotes. Recent studies have yielded significant insights into the structural basis of substrate recognition and the product specificities of these enzymes. However, the mechanism by which SET domain methyltransferases catalyze the transfer of the methyl group from S-adenosyl-L-methionine to the lysine epsilon-amine has remained unresolved. To elucidate this mechanism, we have determined the structures of the plant SET domain enzyme, pea ribulose-1,5 bisphosphate carboxylase/oxygenase large subunit methyltransferase, bound to S-adenosyl-L-methionine, and its non-reactive analogs Aza-adenosyl-L-methionine and Sinefungin, and characterized the binding of these ligands to a homolog of the enzyme. The structural and biochemical data collectively reveal that S-adenosyl-L-methionine is selectively recognized through carbon-oxygen hydrogen bonds between the cofactor's methyl group and an array of structurally conserved oxygens that comprise the methyl transfer pore in the active site. Furthermore, the structure of the enzyme co-crystallized with the product epsilon-N-trimethyllysine reveals a trigonal array of carbon-oxygen interactions between the epsilon-ammonium methyl groups and the oxygens in the pore. Taken together, these results establish a central role for carbon-oxygen hydrogen bonding in aligning the cofactor's methyl group for transfer to the lysine epsilon-amine and in coordinating the methyl groups after transfer to facilitate multiple rounds of lysine methylation.

Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases.,Couture JF, Hauk G, Thompson MJ, Blackburn GM, Trievel RC J Biol Chem. 2006 Jul 14;281(28):19280-7. Epub 2006 May 8. PMID:16682405[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Mininno M, Brugiere S, Pautre V, Gilgen A, Ma S, Ferro M, Tardif M, Alban C, Ravanel S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J Biol Chem. 2012 Jun 15;287(25):21034-44. doi: 10.1074/jbc.M112.359976. Epub, 2012 Apr 30. PMID:22547063 doi:http://dx.doi.org/10.1074/jbc.M112.359976
  2. Couture JF, Hauk G, Thompson MJ, Blackburn GM, Trievel RC. Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases. J Biol Chem. 2006 Jul 14;281(28):19280-7. Epub 2006 May 8. PMID:16682405 doi:http://dx.doi.org/10.1074/jbc.M602257200

2h2e, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA