2b70
T4 Lysozyme mutant L99A at ambient pressureT4 Lysozyme mutant L99A at ambient pressure
Structural highlights
Function[LYS_BPT4] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedFormation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar protein core is truly hydrophobic (i.e., water-repelling). To answer this question we probed the hydration of an approximately 160-A(3), highly hydrophobic cavity created by mutation in T4 lysozyme by using high-pressure crystallography and molecular dynamics simulation. We show that application of modest pressure causes approximately four water molecules to enter the cavity while the protein itself remains essentially unchanged. The highly cooperative filling is primarily due to a small change in bulk water activity, which implies that changing solvent conditions or, equivalently, cavity polarity can dramatically affect interior hydration of proteins and thereby influence both protein activity and folding. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.,Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. Epub 2005 Nov 3. PMID:16269539[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|