CRYSTAL STRUCTURE OF MYXOCOCCUS XANTHUS NUCLEOSIDE DIPHOSPHATE KINASE AND ITS INTERACTION WITH A NUCLEOTIDE SUBSTRATE AT 2.0 ANGSTROMS RESOLUTIONCRYSTAL STRUCTURE OF MYXOCOCCUS XANTHUS NUCLEOSIDE DIPHOSPHATE KINASE AND ITS INTERACTION WITH A NUCLEOTIDE SUBSTRATE AT 2.0 ANGSTROMS RESOLUTION

Structural highlights

1nlk is a 2 chain structure with sequence from Atcc 25232. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Nucleoside-diphosphate kinase, with EC number 2.7.4.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[NDK_MYXXA] Major role in the synthesis of nucleoside triphosphates other than ATP.[HAMAP-Rule:MF_00451]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The X-ray crystallographic structure of nucleoside diphosphate (NDP) kinase from Myxococcus xanthus has been determined using multiple isomorphous replacement techniques and refined at 2.0 A resolution to a crystallographic R-factor of 0.17. This is the first report of the structure of an enzymatically active NDP kinase and of the enzyme with a bound nucleotide. The structure has been determined in P4(3)2(1)2 and I222 crystal forms. The enzyme monomer consists of a four-stranded antiparallel beta-sheet. The surfaces of the sheet are partially covered with five helical segments. There are two protein molecules in the asymmetric unit of the tetragonal crystal form. They form a dimer with an extensive interface in which 1092 A2 per monomer is buried. The majority of the contact area in the dimer interface is between hydrophobic or aromatic residues. Two dimers are related by a crystallographic 2-fold axis to yield a tetramer. This tetramer is also present in the orthorhombic crystals; however, in this case, the 222 symmetry is entirely crystallographic. Upon tetramer formation, an additional 473 A2 of solvent-accessible surface area from each monomer becomes buried. The interface between dimers in the tetramer is stabilized by salt bridges. Equilibrium sedimentation studies are consistent with the enzyme being a tetramer in solution. The structure of a complex of adenosine diphosphate (ADP) with the enzyme was determined and reveals that most of the nucleotide interactions with the protein are with the pyrophosphate and ribose groups, while the base has no hydrogen bonds with the protein and interacts only by stacking with the side chain of Phe59. The Mg2+ interacts with the pyrophosphate of the ADP and via a solvent molecule with the side chain of the conserved Asp120 residue. The mode of interaction with the nucleotide is novel, with the nucleotide binding at the side of the beta-sheet. The structures of the nucleotide in crystals grown in the presence or absence of Mg2+ are essentially identical. In addition, the phosphotransfer reaction from adenosine triphosphate (ATP) to the enzyme can occur without Mg2+. This suggests that only the second step of the reaction in which the enzyme transfers the phosphate to a nucleoside diphosphate acceptor is significantly catalyzed by the metal.

Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interaction with a nucleotide substrate at 2.0 A resolution.,Williams RL, Oren DA, Munoz-Dorado J, Inouye S, Inouye M, Arnold E J Mol Biol. 1993 Dec 20;234(4):1230-47. PMID:8263923[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Williams RL, Oren DA, Munoz-Dorado J, Inouye S, Inouye M, Arnold E. Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interaction with a nucleotide substrate at 2.0 A resolution. J Mol Biol. 1993 Dec 20;234(4):1230-47. PMID:8263923 doi:http://dx.doi.org/10.1006/jmbi.1993.1673

1nlk, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA