1k70
The Structure of Escherichia coli Cytosine Deaminase bound to 4-Hydroxy-3,4-Dihydro-1H-Pyrimidin-2-oneThe Structure of Escherichia coli Cytosine Deaminase bound to 4-Hydroxy-3,4-Dihydro-1H-Pyrimidin-2-one
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCytosine deaminase (CD) catalyzes the deamination of cytosine, producing uracil. This enzyme is present in prokaryotes and fungi (but not multicellular eukaryotes) and is an important member of the pyrimidine salvage pathway in those organisms. The same enzyme also catalyzes the conversion of 5-fluorocytosine to 5-fluorouracil; this activity allows the formation of a cytotoxic chemotherapeutic agent from a non-cytotoxic precursor. The enzyme is of widespread interest both for antimicrobial drug design and for gene therapy applications against tumors. The structure of Escherichia coli CD has been determined in the presence and absence of a bound mechanism-based inhibitor. The enzyme forms an (alphabeta)(8) barrel structure with structural similarity to adenosine deaminase, a relationship that is undetectable at the sequence level, and no similarity to bacterial cytidine deaminase. The enzyme is packed into a hexameric assembly stabilized by a unique domain-swapping interaction between enzyme subunits. The active site is located in the mouth of the enzyme barrel and contains a bound iron ion that coordinates a hydroxyl nucleophile. Substrate binding involves a significant conformational change that sequesters the reaction complex from solvent. The structure of Escherichia coli cytosine deaminase.,Ireton GC, McDermott G, Black ME, Stoddard BL J Mol Biol. 2002 Jan 25;315(4):687-97. PMID:11812140[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|