1hey

From Proteopedia
Revision as of 13:48, 4 August 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

INVESTIGATING THE STRUCTURAL DETERMINANTS OF THE P21-LIKE TRIPHOSPHATE AND MG2+ BINDING SITEINVESTIGATING THE STRUCTURAL DETERMINANTS OF THE P21-LIKE TRIPHOSPHATE AND MG2+ BINDING SITE

Structural highlights

1hey is a 1 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Amongst the superfamily of nucleotide binding proteins, the classical mononucleotide binding fold (CMBF), is the one that has been best characterized structurally. The common denominator of all the members is the triphosphate/Mg2+ binding site, whose signature has been recognized as two structurally conserved stretches of residues: the Kinase 1 and 2 motifs that participate in triphosphate and Mg2+ binding, respectively. The Kinase 1 motif is borne by a loop (the P-loop), whose structure is conserved throughout the whole CMBF family. The low sequence similarity between the different members raises questions about which interactions are responsible for the active structure of the P-loop. What are the minimal requirements for the active structure of the P-loop? Why is the P-loop structure conserved despite the diverse environments in which it is found? To address this question, we have engineered the Kinase 1 and 2 motifs into a protein that has the CMBF and no nucleotide binding activity, the chemotactic protein from Escherichia coli, CheY. The mutant does not exhibit any triphosphate/Mg2+ binding activity. The crystal structure of the mutant reveals that the engineered P-loop is in a different conformation than that found in the CMBF. This demonstrates that the native structure of the P-loop requires external interactions with the rest of the protein. On the basis of an analysis of the conserved tertiary contacts of the P-loop in the mononucleotide binding superfamily, we propose a set of residues that could play an important role in the acquisition of the active structure of the P-loop.

Investigating the structural determinants of the p21-like triphosphate and Mg2+ binding site.,Cronet P, Bellsolell L, Sander C, Coll M, Serrano L J Mol Biol. 1995 Jun 9;249(3):654-64. PMID:7783218[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell. 2010 Apr 9;38(1):128-39. doi: 10.1016/j.molcel.2010.03.001. Epub 2010, Mar 25. PMID:20346719 doi:10.1016/j.molcel.2010.03.001
  2. Cronet P, Bellsolell L, Sander C, Coll M, Serrano L. Investigating the structural determinants of the p21-like triphosphate and Mg2+ binding site. J Mol Biol. 1995 Jun 9;249(3):654-64. PMID:7783218 doi:http://dx.doi.org/10.1006/jmbi.1995.0326

1hey, resolution 2.24Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA