1ead

From Proteopedia
Revision as of 12:34, 21 July 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEXATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX

Structural highlights

1ead is a 1 chain structure with sequence from Atcc 478. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Dihydrolipoyllysine-residue acetyltransferase, with EC number 2.3.1.12
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[ODP2_AZOVI] The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The catalytic domain of dihydrolipoyl transacetylase (E2pCD) forms the core of the pyruvate dehydrogenase multienzyme complex and catalyzes the acetyltransferase reaction using acetylCoA as acetyl donor and dihydrolipoamide (Lip(SH)2) as acceptor. The crystal structures of six complexes and derivatives of Azotobacter vinelandii E2pCD were solved. The binary complexes of the enzyme with CoA and Lip(SH)2 were determined at 2.6- and 3.0-A resolutions, respectively. The two substrates are found in an extended conformation at the two opposite entrances of the 30 A long channel which runs at the interface between two 3-fold-related subunits and forms the catalytic center. The reactive thiol groups of both substrates are within hydrogen-bond distance from the side chain of His 610. This fact supports the indication, derived from the similarity with chloramphenicol acetyl transferase, that the histidine side chain acts as general-base catalyst in the deprotonation of the reactive thiol of CoA. The conformation of Asn 614 appears to be dependent on the protonation state of the active site histidine, whose function as base catalyst is modulated in this way. Studies on E2pCD soaked in a high concentration of dithionite lead to the structure of the binary complex between E2pCD and hydrogen sulfite solved at 2.3-A resolution. It appears that the anion is bound in the middle of the catalytic center and is therefore capable of hosting and stabilizing a negative charge, which is of special interest since the reaction catalyzed by E2pCD is thought to proceed via a negatively charged tetrahedral intermediate. The structure of the binary complex between E2pCD and hydrogen sulfite suggests that transition-state stabilization can be provided by a direct hydrogen bond between the side chain of Ser 558 and the oxy anion of the putative intermediate. In the binary complex with CoA, the hydroxyl group of Ser 558 is hydrogen bonded to the nitrogen atom of one of the two peptide-like units of the substrate. Thus, CoA itself is involved in keeping the Ser hydroxyl group in the proper position for transition-state stabilization. Quite unexpectedly, the structure at 2.6-A resolution of a ternary complex in which CoA and Lip(SH)2 are simultaneously bound to E2pCD reveals that CoA has an alternative, nonproductive binding mode. In this abortive ternary complex, CoA adopts a helical conformation with two intramolecular hydrogen bonds and the reactive sulfur of the pantetheine arm positioned 12 A away from the active site residues involved in the transferase reaction.(ABSTRACT TRUNCATED AT 400 WORDS)

Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p).,Mattevi A, Obmolova G, Kalk KH, Teplyakov A, Hol WG Biochemistry. 1993 Apr 20;32(15):3887-901. PMID:8471601[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Mattevi A, Obmolova G, Kalk KH, Teplyakov A, Hol WG. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p). Biochemistry. 1993 Apr 20;32(15):3887-901. PMID:8471601

1ead, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA