1cks
HUMAN CKSHS2 ATOMIC STRUCTURE: A ROLE FOR ITS HEXAMERIC ASSEMBLY IN CELL CYCLE CONTROLHUMAN CKSHS2 ATOMIC STRUCTURE: A ROLE FOR ITS HEXAMERIC ASSEMBLY IN CELL CYCLE CONTROL
Structural highlights
Function[CKS2_HUMAN] Binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe cell cycle regulatory protein CksHs2 binds to the catalytic subunit of the cyclin-dependent kinases (Cdk's) and is essential for their biological function. The crystal structure of the protein was determined at 2.1 A resolution. The CksHs2 structure is an unexpected hexamer formed by the symmetric assembly of three interlocked dimers into an unusual 12-stranded beta barrel fold that may represent a prototype for this class of protein structures. Sequence-conserved regions form the unusual beta strand exchange between the subunits of the dimer, and the metal and anion binding sites associated with the hexamer assembly. The two other sequence-conserved regions line a 12 A diameter tunnel through the beta barrel and form the six exposed, charged helix pairs. Six kinase subunits can be modeled to bind the assembled hexamer without collision, and therefore this CksHs2 hexamer may participate in cell cycle control by acting as the hub for Cdk multimerization in vivo. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control.,Parge HE, Arvai AS, Murtari DJ, Reed SI, Tainer JA Science. 1993 Oct 15;262(5132):387-95. PMID:8211159[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|