FERREDOXIN [2FE-2S] OXIDIZED FORM FROM CHLORELLA FUSCAFERREDOXIN [2FE-2S] OXIDIZED FORM FROM CHLORELLA FUSCA

Structural highlights

1awd is a 1 chain structure with sequence from 'chlorella' fusca. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: [2Fe-2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe-2S] ferredoxin from a eukaryotic organism in its native form. RESULTS: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 A resolution - the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins. CONCLUSIONS: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe-2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.

Crystal structure determination at 1.4 A resolution of ferredoxin from the green alga Chlorella fusca.,Bes MT, Parisini E, Inda LA, Saraiva LM, Peleato ML, Sheldrick GM Structure. 1999 Oct 15;7(10):1201-11. PMID:10545324[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bes MT, Parisini E, Inda LA, Saraiva LM, Peleato ML, Sheldrick GM. Crystal structure determination at 1.4 A resolution of ferredoxin from the green alga Chlorella fusca. Structure. 1999 Oct 15;7(10):1201-11. PMID:10545324

1awd, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA