Structure of the high affinity Anticalin P3D11 in complex with the human CD98 heavy chain ectodomainStructure of the high affinity Anticalin P3D11 in complex with the human CD98 heavy chain ectodomain

Structural highlights

6s8v is a 4 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:LCN2, HNL, NGAL (HUMAN), SLC3A2, MDU1 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[NGAL_HUMAN] Iron-trafficking protein involved in multiple processes such as apoptosis, innate immunity and renal development. Binds iron through association with 2,5-dihydroxybenzoic acid (2,5-DHBA), a siderophore that shares structural similarities with bacterial enterobactin, and delivers or removes iron from the cell, depending on the context. Iron-bound form (holo-24p3) is internalized following binding to the SLC22A17 (24p3R) receptor, leading to release of iron and subsequent increase of intracellular iron concentration. In contrast, association of the iron-free form (apo-24p3) with the SLC22A17 (24p3R) receptor is followed by association with an intracellular siderophore, iron chelation and iron transfer to the extracellular medium, thereby reducing intracellular iron concentration. Involved in apoptosis due to interleukin-3 (IL3) deprivation: iron-loaded form increases intracellular iron concentration without promoting apoptosis, while iron-free form decreases intracellular iron levels, inducing expression of the proapoptotic protein BCL2L11/BIM, resulting in apoptosis. Involved in innate immunity, possibly by sequestrating iron, leading to limit bacterial growth.[1] [4F2_HUMAN] Required for the function of light chain amino-acid transporters. Involved in sodium-independent, high-affinity transport of large neutral amino acids such as phenylalanine, tyrosine, leucine, arginine and tryptophan. Involved in guiding and targeting of LAT1 and LAT2 to the plasma membrane. When associated with SLC7A6 or SLC7A7 acts as an arginine/glutamine exchanger, following an antiport mechanism for amino acid transport, influencing arginine release in exchange for extracellular amino acids. Plays a role in nitric oxide synthesis in human umbilical vein endothelial cells (HUVECs) via transport of L-arginine. Required for normal and neoplastic cell growth. When associated with SLC7A5/LAT1, is also involved in the transport of L-DOPA across the blood-brain barrier, and that of thyroid hormones triiodothyronine (T3) and thyroxine (T4) across the cell membrane in tissues such as placenta. Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity. When associated with SLC7A5 or SLC7A8, involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane. Together with ICAM1, regulates the transport activity LAT2 in polarized intestinal cells, by generating and delivering intracellular signals. When associated with SLC7A5, plays an important role in transporting L-leucine from the circulating blood to the retina across the inner blood-retinal barrier.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

Publication Abstract from PubMed

Enhanced amino acid supply and dysregulated integrin signaling constitute two hallmarks of cancer and are pivotal for metastatic transformation of cells. In line with its function at the crossroads of both processes, overexpression of CD98hc is clinically observed in various cancer malignancies, thus rendering it a promising tumor target. Methods: We describe the development of Anticalin proteins based on the lipocalin 2 (Lcn2) scaffold against the human CD98hc ectodomain (hCD98hcED) using directed evolution and protein design. X-ray structural analysis was performed to identify the epitope recognized by the lead Anticalin candidate. The Anticalin - with a tuned plasma half-life using PASylation((R)) technology - was labeled with (89)Zr and investigated by positron emission tomography (PET) of CD98-positive tumor xenograft mice. Results: The Anticalin P3D11 binds CD98hc with picomolar affinity and recognizes a protruding loop structure surrounded by several glycosylation sites within the solvent exposed membrane-distal part of the hCD98hcED. In vitro studies revealed specific binding activity of the Anticalin towards various CD98hc-expressing human tumor cell lines, suggesting broader applicability in cancer research. PET/CT imaging of mice bearing human prostate carcinoma xenografts using the optimized and (89)Zr-labeled Anticalin demonstrated strong and specific tracer accumulation (8.6 +/- 1.1 %ID/g) as well as a favorable tumor-to-blood ratio of 11.8. Conclusion: Our findings provide a first proof of concept to exploit CD98hc for non-invasive biomedical imaging. The novel Anticalin-based alphahCD98hc radiopharmaceutical constitutes a promising tool for preclinical and, potentially, clinical applications in oncology.

Development of a high affinity Anticalin((R)) directed against human CD98hc for theranostic applications.,Deuschle FC, Morath V, Schiefner A, Brandt C, Ballke S, Reder S, Steiger K, Schwaiger M, Weber W, Skerra A Theranostics. 2020 Jan 12;10(5):2172-2187. doi: 10.7150/thno.38968. eCollection, 2020. PMID:32089738[17]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002 Nov;10(5):1045-56. PMID:12453413
  2. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001 Oct 1;1514(2):291-302. PMID:11557028
  3. Torrents D, Estevez R, Pineda M, Fernandez E, Lloberas J, Shi YB, Zorzano A, Palacin M. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem. 1998 Dec 4;273(49):32437-45. PMID:9829974
  4. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998 Sep 17;395(6699):288-91. PMID:9751058 doi:http://dx.doi.org/10.1038/26246
  5. Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J. 1999 Jan 4;18(1):49-57. PMID:9878049 doi:http://dx.doi.org/10.1093/emboj/18.1.49
  6. Broer A, Wagner CA, Lang F, Broer S. The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J. 2000 Aug 1;349 Pt 3:787-95. PMID:10903140
  7. Broer A, Friedrich B, Wagner CA, Fillon S, Ganapathy V, Lang F, Broer S. Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains. Biochem J. 2001 May 1;355(Pt 3):725-31. PMID:11311135
  8. Ritchie JW, Taylor PM. Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta. Biochem J. 2001 Jun 15;356(Pt 3):719-25. PMID:11389679
  9. Friesema EC, Docter R, Moerings EP, Verrey F, Krenning EP, Hennemann G, Visser TJ. Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology. 2001 Oct;142(10):4339-48. PMID:11564694
  10. Okamoto Y, Sakata M, Ogura K, Yamamoto T, Yamaguchi M, Tasaka K, Kurachi H, Tsurudome M, Murata Y. Expression and regulation of 4F2hc and hLAT1 in human trophoblasts. Am J Physiol Cell Physiol. 2002 Jan;282(1):C196-204. PMID:11742812
  11. Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N. Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J. 2002 Oct 1;367(Pt 1):239-46. PMID:12117417 doi:http://dx.doi.org/10.1042/BJ20020841
  12. Kim DK, Kanai Y, Choi HW, Tangtrongsup S, Chairoungdua A, Babu E, Tachampa K, Anzai N, Iribe Y, Endou H. Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. Biochim Biophys Acta. 2002 Sep 20;1565(1):112-21. PMID:12225859
  13. Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L. Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp Physiol. 2003 Nov;88(6):699-710. PMID:14603368
  14. Liu X, Charrier L, Gewirtz A, Sitaraman S, Merlin D. CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia. J Biol Chem. 2003 Jun 27;278(26):23672-7. Epub 2003 Apr 25. PMID:12716892 doi:http://dx.doi.org/10.1074/jbc.M302777200
  15. Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2522-30. PMID:15980244 doi:http://dx.doi.org/10.1167/iovs.04-1175
  16. Li S, Whorton AR. Identification of stereoselective transporters for S-nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem. 2005 May 20;280(20):20102-10. Epub 2005 Mar 15. PMID:15769744 doi:http://dx.doi.org/10.1074/jbc.M413164200
  17. Deuschle FC, Morath V, Schiefner A, Brandt C, Ballke S, Reder S, Steiger K, Schwaiger M, Weber W, Skerra A. Development of a high affinity Anticalin((R)) directed against human CD98hc for theranostic applications. Theranostics. 2020 Jan 12;10(5):2172-2187. doi: 10.7150/thno.38968. eCollection, 2020. PMID:32089738 doi:http://dx.doi.org/10.7150/thno.38968

6s8v, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA