SOLUTION STRUCTURE OF CDC42 IN COMPLEX WITH THE GTPASE BINDING DOMAIN OF WASPSOLUTION STRUCTURE OF CDC42 IN COMPLEX WITH THE GTPASE BINDING DOMAIN OF WASP

Structural highlights

1cee is a 2 chain structure with sequence from Human. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[WASP_HUMAN] Defects in WAS are the cause of Wiskott-Aldrich syndrome (WAS) [MIM:301000]; also known as eczema-thrombocytopenia-immunodeficiency syndrome. WAS is an X-linked recessive immunodeficiency characterized by eczema, thrombocytopenia, recurrent infections, and bloody diarrhea. Death usually occurs before age 10.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Defects in WAS are the cause of thrombocytopenia type 1 (THC1) [MIM:313900]. Thrombocytopenia is defined by a decrease in the number of platelets in circulating blood, resulting in the potential for increased bleeding and decreased ability for clotting.[12] [13] [14] [15] [16] Defects in WAS are a cause of neutropenia severe congenital X-linked (XLN) [MIM:300299]. XLN is an immunodeficiency syndrome characterized by recurrent major bacterial infections, severe congenital neutropenia, and monocytopenia.[17]

Function

[CDC42_HUMAN] Plasma membrane-associated small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. In active state binds to a variety of effector proteins to regulate cellular responses. Involved in epithelial cell polarization processes. Regulates the bipolar attachment of spindle microtubules to kinetochores before chromosome congression in metaphase. Plays a role in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia. Mediates CDC42-dependent cell migration.[18] [19] [20] [WASP_HUMAN] Effector protein for Rho-type GTPases. Regulates actin filament reorganization via its interaction with the Arp2/3 complex. Important for efficient actin polymerization. Possible regulator of lymphocyte and platelet function. Mediates actin filament reorganization and the formation of actin pedestals upon infection by pathogenic bacteria.[21] [22] [23]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Rho-family GTP-hydrolysing proteins (GTPases), Cdc42, Rac and Rho, act as molecular switches in signalling pathways that regulate cytoskeletal architecture, gene expression and progression of the cell cycle. Cdc42 and Rac transmit many signals through GTP-dependent binding to effector proteins containing a Cdc42/Rac-interactive-binding (CRIB) motif. One such effector, the Wiskott-Aldrich syndrome protein (WASP), is postulated to link activation of Cdc42 directly to the rearrangement of actin. Human mutations in WASP cause severe defects in haematopoletic cell function, leading to clinical symptoms of thrombocytopenia, immunodeficiency and eczema. Here we report the solution structure of a complex between activated Cdc42 and a minimal GTPase-binding domain (GBD) from WASP. An extended amino-terminal GBD peptide that includes the CRIB motif contacts the switch I, beta2 and alpha5 regions of Cdc42. A carboxy-terminal beta-hairpin and alpha-helix pack against switch II. The Phe-X-His-X2-His portion of the CRIB motif and the alpha-helix appear to mediate sensitivity to the nucleotide switch through contacts to residues 36-40 of Cdc42. Discrimination between the Rho-family members is likely to be governed by GBD contacts to the switch I and alpha5 regions of the GTPases. Structural and biochemical data suggest that GBD-sequence divergence outside the CRIB motif may reflect additional regulatory interactions with functional domains that are specific to individual effectors.

Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.,Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK Nature. 1999 May 27;399(6734):379-83. PMID:10360578[24]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kwan SP, Hagemann TL, Radtke BE, Blaese RM, Rosen FS. Identification of mutations in the Wiskott-Aldrich syndrome gene and characterization of a polymorphic dinucleotide repeat at DXS6940, adjacent to the disease gene. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4706-10. PMID:7753869
  2. Kolluri R, Shehabeldin A, Peacocke M, Lamhonwah AM, Teichert-Kuliszewska K, Weissman SM, Siminovitch KA. Identification of WASP mutations in patients with Wiskott-Aldrich syndrome and isolated thrombocytopenia reveals allelic heterogeneity at the WAS locus. Hum Mol Genet. 1995 Jul;4(7):1119-26. PMID:8528198
  3. Derry JM, Kerns JA, Weinberg KI, Ochs HD, Volpini V, Estivill X, Walker AP, Francke U. WASP gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Hum Mol Genet. 1995 Jul;4(7):1127-35. PMID:8528199
  4. Schindelhauer D, Weiss M, Hellebrand H, Golla A, Hergersberg M, Seger R, Belohradsky BH, Meindl A. Wiskott-Aldrich syndrome: no strict genotype-phenotype correlations but clustering of missense mutations in the amino-terminal part of the WASP gene product. Hum Genet. 1996 Jul;98(1):68-76. PMID:8682510
  5. Remold-O'Donnell E, Cooley J, Shcherbina A, Hagemann TL, Kwan SP, Kenney DM, Rosen FS. Variable expression of WASP in B cell lines of Wiskott-Aldrich syndrome patients. J Immunol. 1997 May 1;158(9):4021-5. PMID:9126958
  6. Ariga T, Yamada M, Sakiyama Y. Mutation analysis of five Japanese families with Wiskott-Aldrich syndrome and determination of the family members' carrier status using three different methods. Pediatr Res. 1997 Apr;41(4 Pt 1):535-40. PMID:9098856 doi:10.1203/00006450-199704000-00013
  7. MacCarthy-Morrogh L, Gaspar HB, Wang YC, Katz F, Thompson L, Layton M, Jones AM, Kinnon C. Absence of expression of the Wiskott-Aldrich syndrome protein in peripheral blood cells of Wiskott-Aldrich syndrome patients. Clin Immunol Immunopathol. 1998 Jul;88(1):22-7. PMID:9683546
  8. Facchetti F, Blanzuoli L, Vermi W, Notarangelo LD, Giliani S, Fiorini M, Fasth A, Stewart DM, Nelson DL. Defective actin polymerization in EBV-transformed B-cell lines from patients with the Wiskott-Aldrich syndrome. J Pathol. 1998 May;185(1):99-107. PMID:9713366 doi:<99::AID-PATH48>3.0.CO;2-L 10.1002/(SICI)1096-9896(199805)185:1<99::AID-PATH48>3.0.CO;2-L
  9. Parolini O, Ressmann G, Haas OA, Pawlowsky J, Gadner H, Knapp W, Holter W. X-linked Wiskott-Aldrich syndrome in a girl. N Engl J Med. 1998 Jan 29;338(5):291-5. PMID:9445409 doi:10.1056/NEJM199801293380504
  10. Lemahieu V, Gastier JM, Francke U. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Hum Mutat. 1999;14(1):54-66. PMID:10447259 doi:<54::AID-HUMU7>3.0.CO;2-E 10.1002/(SICI)1098-1004(1999)14:1<54::AID-HUMU7>3.0.CO;2-E
  11. El-Hakeh J, Rosenzweig S, Oleastro M, Basack N, Berozdnik L, Molina F, Rivas EM, Zelazko M, Danielian S. Wiskott-Aldrich syndrome in Argentina: 17 unique, including nine novel, mutations. Hum Mutat. 2002 Feb;19(2):186-7. PMID:11793485 doi:10.1002/humu.9013
  12. Derry JM, Kerns JA, Weinberg KI, Ochs HD, Volpini V, Estivill X, Walker AP, Francke U. WASP gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Hum Mol Genet. 1995 Jul;4(7):1127-35. PMID:8528199
  13. Lemahieu V, Gastier JM, Francke U. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Hum Mutat. 1999;14(1):54-66. PMID:10447259 doi:<54::AID-HUMU7>3.0.CO;2-E 10.1002/(SICI)1098-1004(1999)14:1<54::AID-HUMU7>3.0.CO;2-E
  14. Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, Strina D, Patrosso MC, Ramenghi U, Sacco MG, et al.. X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet. 1995 Apr;9(4):414-7. PMID:7795648 doi:http://dx.doi.org/10.1038/ng0495-414
  15. Ho LL, Ayling J, Prosser I, Kronenberg H, Iland H, Joshua D. Missense C168T in the Wiskott--Aldrich Syndrome protein gene is a common mutation in X-linked thrombocytopenia. Br J Haematol. 2001 Jan;112(1):76-80. PMID:11167787
  16. Notarangelo LD, Mazza C, Giliani S, D'Aria C, Gandellini F, Ravelli C, Locatelli MG, Nelson DL, Ochs HD, Notarangelo LD. Missense mutations of the WASP gene cause intermittent X-linked thrombocytopenia. Blood. 2002 Mar 15;99(6):2268-9. PMID:11877312
  17. Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van Den Oord JJ, Verhoef GE, Boogaerts MA, Fryns JP, You D, Rosen MK, Vandenberghe P. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 2001 Mar;27(3):313-7. PMID:11242115 doi:10.1038/85886
  18. Gauthier-Campbell C, Bredt DS, Murphy TH, El-Husseini Ael-D. Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs. Mol Biol Cell. 2004 May;15(5):2205-17. Epub 2004 Feb 20. PMID:14978216 doi:10.1091/mbc.E03-07-0493
  19. Oceguera-Yanez F, Kimura K, Yasuda S, Higashida C, Kitamura T, Hiraoka Y, Haraguchi T, Narumiya S. Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. J Cell Biol. 2005 Jan 17;168(2):221-32. Epub 2005 Jan 10. PMID:15642749 doi:10.1083/jcb.200408085
  20. Modzelewska K, Newman LP, Desai R, Keely PJ. Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem. 2006 Dec 8;281(49):37527-35. Epub 2006 Oct 12. PMID:17038317 doi:10.1074/jbc.M604342200
  21. Cory GO, Garg R, Cramer R, Ridley AJ. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J Biol Chem. 2002 Nov 22;277(47):45115-21. Epub 2002 Sep 15. PMID:12235133 doi:10.1074/jbc.M203346200
  22. Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K, Dominguez R. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16644-9. Epub 2005 Nov 7. PMID:16275905
  23. Cheng HC, Skehan BM, Campellone KG, Leong JM, Rosen MK. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature. 2008 Aug 21;454(7207):1009-13. Epub 2008 Jul 23. PMID:18650809 doi:10.1038/nature07160
  24. Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Nature. 1999 May 27;399(6734):379-83. PMID:10360578 doi:10.1038/20726
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA