Mouse Profilin IIa in complex with a double repeat from the FH1 domain of mDia1Mouse Profilin IIa in complex with a double repeat from the FH1 domain of mDia1

Structural highlights

2v8f is a 3 chain structure with sequence from Lk3 transgenic mice. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PROF2_MOUSE] Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. [DIAP1_MOUSE] Acts in a Rho-dependent manner to recruit PFY1 to the membrane. Required for the assembly of F-actin structures, such as actin cables and stress fibers. Nucleates actin filaments. Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization. Required for cytokinesis, and transcriptional activation of the serum response factor. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration. Has neurite outgrowth promoting activity. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (By similarity).[1] [2] [3] [4]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Profilins are small proteins capable of binding actin, poly-l-proline and other proline-rich sequences, and phosphatidylinositol (4,5)-bisphosphate. A number of proline-rich ligands for profilin have been characterised, including proteins of the Ena/VASP and formin families. We have determined the high-resolution crystal structures of mouse profilin 2a in complex with peptides from two functionally important ligands from different families, VASP and mDia1. The structures show that the binding mode of the peptide ligand is strongly affected by the non-proline residues in the sequence, and the peptides from VASP and mDia1 bind to profilin 2a in distinct modes. The high resolution of the crystallographic data allowed us to detect conserved CH-pi hydrogen bonds between the peptide and profilin in both complexes. Furthermore, both peptides, which are shown to have micromolar affinity, induced the dimerisation of profilin, potentially leading to functionally different ligand-profilin-actin complexes. The peptides did not significantly affect actin polymerisation kinetics in the presence or in the absence of profilin 2a. Mutant profilins were tested for binding to poly-L-proline and the VASP and mDia1 peptides, and the F139A mutant bound proline-rich ligands with near-native affinity. Peptide blotting using a series of designed peptides with profilins 1 and 2a indicates differences between the two profilins towards proline-rich peptides from mDia1 and VASP. Our data provide structural insights into the mechanisms of mDia1 and VASP regulated actin polymerisation.

High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP.,Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M J Mol Biol. 2008 Jan 4;375(1):270-90. Epub 2007 Oct 24. PMID:18001770[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 1997 Jun 2;16(11):3044-56. PMID:9214622 doi:http://dx.doi.org/10.1093/emboj/16.11.3044
  2. Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell. 2000 Jan;5(1):13-25. PMID:10678165
  3. Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N. Actin polymerization-driven molecular movement of mDia1 in living cells. Science. 2004 Mar 26;303(5666):2007-10. PMID:15044801 doi:http://dx.doi.org/10.1126/science.1093923
  4. Schwaibold EM, Brandt DT. Identification of Neurochondrin as a new interaction partner of the FH3 domain of the Diaphanous-related formin Dia1. Biochem Biophys Res Commun. 2008 Aug 29;373(3):366-72. doi:, 10.1016/j.bbrc.2008.06.042. Epub 2008 Jun 20. PMID:18572016 doi:http://dx.doi.org/10.1016/j.bbrc.2008.06.042
  5. Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M. High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP. J Mol Biol. 2008 Jan 4;375(1):270-90. Epub 2007 Oct 24. PMID:18001770 doi:10.1016/j.jmb.2007.10.050

2v8f, resolution 1.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA