Structure of the Rac/p67phox complexStructure of the Rac/p67phox complex
Structural highlights
1e96 is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
[NCF2_HUMAN] Defects in NCF2 are a cause of chronic granulomatous disease autosomal recessive cytochrome-b-positive type 2 (CGD2) [MIM:233710]. Chronic granulomatous disease is a genetically heterogeneous disorder characterized by the inability of neutrophils and phagocytes to kill microbes that they have ingested. Patients suffer from life-threatening bacterial/fungal infections.[1][2][3][4][5][6][7][8][9]
Function
[RAC1_HUMAN] Plasma membrane-associated small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate cellular responses such as secretory processes, phagocytosis of apoptotic cells, epithelial cell polarization and growth-factor induced formation of membrane ruffles. Rac1 p21/rho GDI heterodimer is the active component of the cytosolic factor sigma 1, which is involved in stimulation of the NADPH oxidase activity in macrophages (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. Stimulates PKN2 kinase activity. In concert with RAB7A, plays a role in regulating the formation of RBs (ruffled borders) in osteoclasts. In glioma cells, promotes cell migration and invasion.[10][11][12][13][14] Isoform B has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. It is able to bind to the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction.[15][16][17][18][19] [NCF2_HUMAN] NCF2, NCF1, and a membrane bound cytochrome b558 are required for activation of the latent NADPH oxidase (necessary for superoxide production).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
p67phox is an essential part of the NADPH oxidase, a multiprotein enzyme complex that produces superoxide ions in response to microbial infection. Binding of the small GTPase Rac to p67phox is a key step in the assembly of the active enzyme complex. The structure of Rac.GTP bound to the N-terminal TPR (tetratricopeptide repeat) domain of p67phox reveals a novel mode of Rho family/effector interaction and explains the basis of GTPase specificity. Complex formation is largely mediated by an insertion between two TPR motifs, suggesting an unsuspected versatility of TPR domains in target recognition and in their more general role as scaffolds for the assembly of multiprotein complexes.
Structure of the TPR domain of p67phox in complex with Rac.GTP.,Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K Mol Cell. 2000 Oct;6(4):899-907. PMID:11090627[20]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑de Boer M, Hilarius-Stokman PM, Hossle JP, Verhoeven AJ, Graf N, Kenney RT, Seger R, Roos D. Autosomal recessive chronic granulomatous disease with absence of the 67-kD cytosolic NADPH oxidase component: identification of mutation and detection of carriers. Blood. 1994 Jan 15;83(2):531-6. PMID:8286749
↑Bonizzato A, Russo MP, Donini M, Dusi S. Identification of a double mutation (D160V-K161E) in the p67phox gene of a chronic granulomatous disease patient. Biochem Biophys Res Commun. 1997 Feb 24;231(3):861-3. PMID:9070911 doi:S0006-291X(97)96204-5
↑Patino PJ, Rae J, Noack D, Erickson R, Ding J, de Olarte DG, Curnutte JT. Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the nicotinamide adenine dinucleotide phosphate (reduced form) oxidase component p67-phox. Blood. 1999 Oct 1;94(7):2505-14. PMID:10498624
↑Noack D, Rae J, Cross AR, Munoz J, Salmen S, Mendoza JA, Rossi N, Curnutte JT, Heyworth PG. Autosomal recessive chronic granulomatous disease caused by novel mutations in NCF-2, the gene encoding the p67-phox component of phagocyte NADPH oxidase. Hum Genet. 1999 Nov;105(5):460-7. PMID:10598813
↑Cross AR, Noack D, Rae J, Curnutte JT, Heyworth PG. Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (first update). Blood Cells Mol Dis. 2000 Oct;26(5):561-5. PMID:11112388 doi:10.1006/bcmd.2000.0333
↑El Kares R, Barbouche MR, Elloumi-Zghal H, Bejaoui M, Chemli J, Mellouli F, Tebib N, Abdelmoula MS, Boukthir S, Fitouri Z, M'Rad S, Bouslama K, Touiri H, Abdelhak S, Dellagi MK. Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia. J Hum Genet. 2006;51(10):887-95. Epub 2006 Aug 26. PMID:16937026 doi:10.1007/s10038-006-0039-8
↑Yu G, Hong DK, Dionis KY, Rae J, Heyworth PG, Curnutte JT, Lewis DB. Focus on FOCIS: the continuing diagnostic challenge of autosomal recessive chronic granulomatous disease. Clin Immunol. 2008 Aug;128(2):117-26. doi: 10.1016/j.clim.2008.05.008. PMID:18625437 doi:10.1016/j.clim.2008.05.008
↑Koker MY, Sanal O, van Leeuwen K, de Boer M, Metin A, Patiroglu T, Ozgur TT, Tezcan I, Roos D. Four different NCF2 mutations in six families from Turkey and an overview of NCF2 gene mutations. Eur J Clin Invest. 2009 Oct;39(10):942-51. doi: 10.1111/j.1365-2362.2009.02195.x., Epub 2009 Jul 17. PMID:19624736 doi:10.1111/j.1365-2362.2009.02195.x
↑Roos D, Kuhns DB, Maddalena A, Bustamante J, Kannengiesser C, de Boer M, van Leeuwen K, Koker MY, Wolach B, Roesler J, Malech HL, Holland SM, Gallin JI, Stasia MJ. Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis. 2010 Apr 15;44(4):291-9. doi: 10.1016/j.bcmd.2010.01.009., Epub 2010 Feb 18. PMID:20167518 doi:10.1016/j.bcmd.2010.01.009
↑Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401-10. PMID:1643658
↑Vincent S, Settleman J. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol. 1997 Apr;17(4):2247-56. PMID:9121475
↑Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci. 2009 Dec 15;122(Pt 24):4535-46. doi: 10.1242/jcs.053728. Epub 2009, Nov 24. PMID:19934221 doi:10.1242/jcs.053728
↑Hamill KJ, Hopkinson SB, DeBiase P, Jones JC. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol Biol Cell. 2009 Jun;20(12):2954-62. doi: 10.1091/mbc.E09-01-0051. Epub 2009, Apr 29. PMID:19403692 doi:10.1091/mbc.E09-01-0051
↑Li X, Lee AY. Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIalpha-mediated inactivation of Rac1 GTPase. J Biol Chem. 2010 Oct 15;285(42):32436-45. doi: 10.1074/jbc.M110.120451. Epub, 2010 Aug 9. PMID:20696765 doi:10.1074/jbc.M110.120451
↑Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401-10. PMID:1643658
↑Vincent S, Settleman J. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol. 1997 Apr;17(4):2247-56. PMID:9121475
↑Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci. 2009 Dec 15;122(Pt 24):4535-46. doi: 10.1242/jcs.053728. Epub 2009, Nov 24. PMID:19934221 doi:10.1242/jcs.053728
↑Hamill KJ, Hopkinson SB, DeBiase P, Jones JC. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol Biol Cell. 2009 Jun;20(12):2954-62. doi: 10.1091/mbc.E09-01-0051. Epub 2009, Apr 29. PMID:19403692 doi:10.1091/mbc.E09-01-0051
↑Li X, Lee AY. Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIalpha-mediated inactivation of Rac1 GTPase. J Biol Chem. 2010 Oct 15;285(42):32436-45. doi: 10.1074/jbc.M110.120451. Epub, 2010 Aug 9. PMID:20696765 doi:10.1074/jbc.M110.120451
↑Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K. Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell. 2000 Oct;6(4):899-907. PMID:11090627