6bqa

From Proteopedia
Revision as of 09:58, 27 March 2019 by OCA (talk | contribs)
Jump to navigation Jump to search

BRD9 bromodomain in complex with 3-(6-(but-3-en-1-yl)-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)-N,N-dimethylbenzamideBRD9 bromodomain in complex with 3-(6-(but-3-en-1-yl)-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)-N,N-dimethylbenzamide

Structural highlights

6bqa is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:BRD9, UNQ3040/PRO9856 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[BRD9_HUMAN] May play a role in chromatin remodeling and regulation of transcription.

Publication Abstract from PubMed

Targeting the interaction with or displacement of the 'right' water molecule can significantly increase inhibitor potency in structure-guided drug design. Multiple computational approaches exist to predict which waters should be targeted for displacement to achieve the largest gain in potency. However, the relative success of different methods remains underexplored. Here, we present a comparison of the ability of five water prediction programs (3D-RISM, SZMAP, WaterFLAP, WaterRank, and WaterMap) to predict crystallographic water locations, calculate their binding free energies, and to relate differences in these energies to observed changes in potency. The structural cohort included nine Bruton's Tyrosine Kinase (BTK) structures, and nine bromodomain structures. Each program accurately predicted the locations of most crystallographic water molecules. However, the predicted binding free energies correlated poorly with the observed changes in inhibitor potency when solvent atoms were displaced by chemical changes in closely related compounds.

Water molecules in protein-ligand interfaces. Evaluation of software tools and SAR comparison.,Nittinger E, Gibbons P, Eigenbrot C, Davies DR, Maurer B, Yu CL, Kiefer JR, Kuglstatter A, Murray J, Ortwine DF, Tang Y, Tsui V J Comput Aided Mol Des. 2019 Feb 12. pii: 10.1007/s10822-019-00187-y. doi:, 10.1007/s10822-019-00187-y. PMID:30756207[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Nittinger E, Gibbons P, Eigenbrot C, Davies DR, Maurer B, Yu CL, Kiefer JR, Kuglstatter A, Murray J, Ortwine DF, Tang Y, Tsui V. Water molecules in protein-ligand interfaces. Evaluation of software tools and SAR comparison. J Comput Aided Mol Des. 2019 Feb 12. pii: 10.1007/s10822-019-00187-y. doi:, 10.1007/s10822-019-00187-y. PMID:30756207 doi:http://dx.doi.org/10.1007/s10822-019-00187-y

6bqa, resolution 1.03Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA