Crystal structure of the cytoplasmic tail of (pro)renin receptor as a MBP fusion (Maltose-free form)Crystal structure of the cytoplasmic tail of (pro)renin receptor as a MBP fusion (Maltose-free form)

Structural highlights

3lc8 is a 2 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:b4034, JW3994, malE, ATP6AP2, ATP6IP2, CAPER, ELDF10, HT028, MSTP009, PSEC0072 ("Bacillus coli" Migula 1895)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[MALE_ECOLI] Involved in the high-affinity maltose membrane transport system MalEFGK. Initial receptor for the active transport of and chemotaxis toward maltooligosaccharides.

Publication Abstract from PubMed

The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain ( approximately 310 amino acids), a single transmembrane domain ( approximately 20 amino acids) and an intracellular domain ( approximately 19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain ( approximately 30 amino acids), the IC domain is also involved in assembly of V(0) portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0A (maltose-free) and 2.15A (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.

Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein.,Zhang Y, Gao X, Michael Garavito R Biochem Biophys Res Commun. 2011 Mar 21. PMID:21420935[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Zhang Y, Gao X, Michael Garavito R. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein. Biochem Biophys Res Commun. 2011 Mar 21. PMID:21420935 doi:10.1016/j.bbrc.2011.03.074

3lc8, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA